Initiation à la science des données

  • Cours (CM) -
  • Cours intégrés (CI) 28h
  • Travaux dirigés (TD) -
  • Travaux pratiques (TP) -
  • Travail étudiant (TE) -

Langue de l'enseignement : Français

Niveau de l'enseignement : B2-Avancé - Utilisateur indépendant

Description du contenu de l'enseignement

Ce cours est proposé aux étudiants de licence
Code Apogée : semestre impair MIEXEMME
semestre pair MIEXFMME Dans un contexte scientifique, sociétal et économique où stockage, archivage, traitement et valorisation des données sont devenus des enjeux majeurs, cette U.E. permettra de découvrir les bases de la science des données, c’est-à-dire les méthodes et outils, théoriques et pratiques, pour comprendre les données : analyse, visualisation, apprentissage de modèles… Les cours seront faits en salle informatique, avec un poste de travail par étudiant et des manipulations fréquentes sur des exemples. Toutes les notions du cours seront illustrées à partir d’une base de données sur le cinéma.

Compétences à acquérir

Compétences disciplinaires :
Lire des données statistiques sous différentes formes, interpréter un tableau croisé, pour produire un document de synthèse de données statistiques.
Se servir aisément des outils et méthodes de recueil, de traitement et d’analyse des données pour observer et analyser les phénomènes et/ou les comportements du sous domaine.
Concevoir le traitement informatisé d’informations de différentes natures, telles que des données, des images et des textes.
Exploiter des logiciels d’acquisition et d’analyse de données avec un esprit critique.
Mettre en œuvre des techniques de programmation, par l’exemple, notamment pour développer des applications simples d’acquisition et de traitements de données.
Analyser et interpréter les résultats produits par l'exécution d'un programme.
Mobiliser les outils mathématiques nécessaires à la modélisation.
Valider un modèle par comparaison de ses prévisions aux résultats expérimentaux et apprécier les limites de validité.
Compétences transversales :
Analyser et synthétiser des données en vue de leur exploitation. Développer une argumentation avec esprit critique

Bibliographie, lectures recommandées

Webographie :
Bibliographie :
  • Data science : fondamentaux et études de cas. Machine learning avec Python et R, Eric Biernat et Michel Lutz, Eyrolles.
  • Big data et machine learning - Le concept et les outils de la data science, 2ème édition, Pirmin Lemberger, Marc Batty, Médéric Morel, Jean-Luc Raffaelli, Dunod.

Contact

UFR de Mathématique et Informatique

7 RUE RENE DESCARTES
67084 STRASBOURG
0368850123

Formulaire de contact

Responsable

Céline Meillier

Myriam Maumy-Bertrand

Intervenants

Céline Meillier

Delphine Bernhard

Myriam Maumy-Bertrand

Fabrice Jossinet


Enseignements d'ouverture pour non-spécialistes