DEUX QUESTIONS SUR LES NOMBRES REELS

SOULEVÉES PAR L'ARTICLE DE R. DUVAL

F. PLUVINAGE

Très raisonnablement, l'auteur de l'article s'en tient au constat sur l'enseignement des mathématiques tel qu'il peut être observé actuellement sur le terrain. Et on ne risque guère de se tromper en avançant que ce constat correspond à la quasi-totalité des présentations des nombres, à travers l'écriture et la position de points sur une droite graduée, proposées dans les classes de collège puis de lycée. Dès lors, il vaut la peine d'aller un peu plus loin, et deux questions méritent en ce sens d'être envisagées. La première est :

"La non-congruence sémantique, entre la droite et l'ensemble des nombres réels écrits, est-elle inscrite dans les mathématiques ?"

Si la réponse à cette première question devait être affirmative, on en resterait là ; mais en concluant négativement, nous sommes amenés à poser une seconde question. On peut, avant même de justifier sommairement le bien-fondé d'une réponse négative à la première question, formuler la seconde de la façon suivante :

"Les apprentissages obligent-ils à passer par une étape où écriture et représentation des nombres semblent incompatibles ?"

Réponse à la première question

Ce qui est inscrit dans les mathématiques, c'est l'évacuation des aspects purement contingents. La seule idée d'une "théorie mathématique du dessin géométrique sur la feuille de format A4 à petits carreaux tracés en bleu" apparaît risible, même si la dite feuille est un support de choix pour une mine de problèmes.
Deux questions sur les nombres réels

Les limitations de la feuille doivent pour le moins pouvoir être choisies arbitraires, de même que celles du réseau, pour que l'on soit en présence d'objets d'études mathématiques. Ainsi l'illimitation est-elle constitutive de la démarche mathématique, comme peut l'attester par exemple un paradoxe aussi ancien que celui d'Achille courant après la tortue. Remarquons toutefois qu'à partir de telles considérations, il a fallu attendre le XIXe siècle pour que l'entreprise d'arithmétisation des nombres réels et le traitement numérique de la continuité puissent être considérés comme menés à bien. Un écart aussi énorme dans le temps marque la présence de difficultés très importantes, dont il serait sans doute utopique de vouloir effacer toute trace lors d'un enseignement.

Mais l'illimitation est à tel point ancrée dans les mathématiques que, si des constructions à base de limites restent acceptables (et fructueuses), le fait de vouloir enfermer l'infini dans un “sac”, sous la forme d'infini actuel, ne pouvait qu'avoir des conséquences explosives. Inscrits dans la construction cantorienne se trouvaient des paradoxes, dont ceux de Burali-Forti furent parmi les premiers, obligeant à poser une théorie des ensembles, alors même que Cantor n'aurait pas voulu d'axiomes. Mais des axiomes s'imposèrent, impliquant la nécessité de considérer des classes qui ne peuvent pas prétendre à l'appellation d'ensembles. Inévitable dialectique ...

Du même coup, il n'y a aucune objection présentable à l'encontre de la construction que propose par exemple J. Harthong dans l'Ouvet n° 46, mars 1987, IREM de Strasbourg. Cette construction ne fait rien d'autre que de repousser jusqu'à inaccessibilité le mode de représentation habituel pour des quantités importantes.

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 10^6 & 2 \times 10^6 & 3 \times 10^6 & 4 \times 10^6 & 5 \times 10^6 \\
\end{array}
\]

quantité ou grandeur représentée

Une graduation convante pour le géographe

Un géographe ou un économiste qui veulent représenter la production d'une marchandise (matière première, énergie, ...) sont souvent amenés à utiliser des échelles sur lesquelles l'unité 1 est bien inférieure au seuil des possibilités de représentation. Ainsi, sur la graduation représentée, si nous désignons un point avec la plus grande précision dont nous soyons capable ici, disons de 1/10ème de millimètre, l'incertitude sur la grandeur représentée est encore de l'ordre de 10000= 10^4. Dans ce sens, notre point concrète correspond à une classe d'environ 10000 entiers. Il faut bien dire classe et non pas
Deux questions sur les nombres réels

ensemble, car nous sommes dans l’incapacité de fixer un premier et un dernier : la frontière de notre paquet d’environ 10000 entiers ne peut qu’être imprécise. Certes, 10^6 reste encore un bien “petit” nombre, et une représentation dans laquelle chacun de 10^6 entiers serait discernable est techniquement réalisable. Mais quels que soient notre désir de précision et la finesse de notre équipement, nous rencontrerons toujours des situations comparables à celle-ci, où le repère matériel ne permet pas d’isoler un entier mais désigne toute une classe aux contours imprécis. Dès lors, deux attitudes sont possibles pour être en accord avec l’indispensable illimitation. L’attitude primitive consiste à idéaliser le point en lui attribuant une dimension nulle. Mais une attitude plus évoluée est justifiée par la substitution, clairement explicitée dès le XVIIIe siècle, de l’idée d’incertitude à celle d’erreur, remettant en cause l’antique primat des modèles sur les mesures. Dans cette attitude évoluée, l’imprécision ne disparaît pas, mais elle est reléguée à un niveau à jamais inaccessible. Pour que tout aspect contingent puisse ainsi disparaître, il suffit de concevoir un entier ontologiquement inaccessible parce que trop grand. Dans l’article de J. Harthong déjà cité, on imagine un tel entier mis à la place de 10^6 dans la graduation représentée ici, et on aboutit alors à la notion de “halo” de la mathématique non-standard. Ce qu’il importe de souligner en tout premier lieu, c’est qu’une construction des nombres réels n’a besoin que du “trop grand pour être accessible”, autrement dit de l’inaccessible, et non de l’infini. Au passage, notons l’écart étymologique de ces deux termes …

En dehors des mathématiques, on peut rencontrer des réflexions comparables, par exemple en cosmologie. Récemment, l’astronome J.P. Parisot (co-auteur avec C. Dumoulin du remarquable traité “d’Astronomie pratique et Informatique”, Masson, Paris, 1987) m’indiquait que la masse totale des objets de l’univers connu, qui est pourtant d’un diamètre dont la mesure en mètres reste insignifiante par rapport à un entier inaccessible, atteint déjà la moitié d’une masse critique au delà de laquelle la vitesse de libération serait supérieure à celle de la lumière. Pour que notre univers soit ainsi un “trou noir”, duquel toute échappée de matière serait exclue, il suffit donc que nous n’ayons actuellement repéré dans nos observations que la moitié de ses objets. Quels sens auraient alors des spéculations sur sa finitude ou son infinitude ? Là encore, l’excessivement grand ou excessivement gros peut satisfaire l’imagination la plus débridée.
Réponse à la seconde question

Ce qui s'impose comme une évidence quant à la progression des apprentissages, c'est que la mesure des grandeurs ne peut pas apparaître d'emblée entachée d'incertitude. Il n'est en effet pas possible de spéculer sur des modèles avant d'en avoir éprouvé quelques uns de manière assez solide. De ce point de vue, l'antériorité épistémologique des nombres rationnels présentés comme des fractions, sur les nombres de l'écriture à virgule (ou point décimal) se justifie parfaitement : l'écriture et la lecture de fractions rendent compte directement de procédures de mesures, alors que l'écriture sous forme de chiffres décimaux renvoie directement à des résultats de mesure, indépendamment de toute procédure d'obtention. Quand nous disons "trois quarts", nous renvoyons à une procédure qui donne d'abord un sens à l'idée de quart puis consiste à considérer trois exemplaires d'un tel quart, pris en quelque sorte comme unité. Il est clair que la signification véhiculée par "zéro virgule soixante quinze", d'ailleurs mieux perçue sous la forme écrite 0,75, est de nature très différente et relève d'approximations successives : c'est un nombre compris entre zéro et un, qui a 7 pour chiffre des dixièmes et 5 pour chiffre des centièmes. L'existence de nombres irrationnels reste aujourd'hui un "choc" dans les apprentissages mathématiques, alors que celle de nombres non décimaux n'est que l'occasion d'une rencontre avec un processus illimité (ce qui n'est déjà pas mal tout de même), par exemple "la division par 3 qui ne s'arrête jamais".

Pour des manipulations de mesures de grandeurs, il est clair que, de nos jours comme à l'époque de la mathématique grecque, un début par les longueurs, des aires, des volumes s'impose sur d'autres possibilités, par exemple toutes les mesures sur des circuits électriques. C'est que la description, la représentation et la construction de solides offrent des possibilités d'éprouver le modèle géométrique, alors que des réflexions équivalentes sur le courant électrique seraient très difficiles à organiser d'emblée. Si l'on trouve par exemple 14,2 cm pour la diagonale d'un carré de côté 10 cm, on peut parler d'erreurs, du dessin ou de la mesure. La notion d'incertitude est incontestablement plus subtile, car elle concerne non pas une mesure, mais une famille de mesures.

Mais aujourd'hui, la notion d'incertitude est cependant vite amenée à être gérée si l'on a recours à l'outil informatique. En travaillant sur un écran de 64000 points, ou avec une table traçante ayant un pas de 1/10-ème de millimètre, on est à même de savoir que la perfection d'emploi de l'outil est atteinte pourvu que les écarts introduits restent en dessous d'un seuil de tolérance. Dans ces conditions, l'écriture et la représentation des nombres à l'occasion de
Deux questions sur les nombres réels

travaux sur de tels matériels ne peuvent en aucune façon apparaître comme “incongrus”.
Reste cependant l’illimitation, car l’espace de l’écran ou la feuille de papier ne peuvent pas
ne pas être prolongés en pensée. La division par 3 précédemment signalée et, avant elle, la
simple possibilité d’écriture des nombres entiers dans le système décimal de position
procurent des rencontres avec l’illimité.
Nous ne sommes pas sûrs que l’attitude primitive évoquée plus haut : supprimer
l’imprécision, doive obligatoirement précéder l’attitude évoluée : repousser l’imprécision à
un niveau inaccessible. Mais il nous semble que l’on ne peut présenter aujourd’hui la
première qu’à deux conditions :
– savoir qu’elle n’est qu’une possibilité et pas une obligation mathématique,
– avoir une idée de ses conséquences.

C’est par exemple pour cela que nous trouvons véritablement perverse l’une des questions
proposées par J. Robinet (Les réels : Quels modèles en ont les élèves ?, Educ. Studies in
electronique (ou avec un ordinateur) la droite, qu’est-ce qu’on obtiendrait comme dessin
“ultime” ?” La question vient à la fin d’une série de quatre, les trois premières questions
portant explicitement sur les nombres réels. Or si une droite idéalement mince (de largeur
nulle) peut être soumise à “l’ultime grossissement”, il devient absurde de l’imaginer
graduée. Seuls des sujets formés à l’attitude évoluée pourraient voir dans la question un test
de connaissance sensé, et leur réponse serait évidente : on voit apparaître un espace de
représentation entièrement noir, parce que complètement occupé par l’image de la droite.

Il est remarquable que, malgré l’enseignement, on trouve des productions de dessins
auxquelles il ne manque pas grand chose pour être en accord avec cette réponse.

Reproduction (approximative) de figures de
l’article de J. Robinet

Il est alors scandaleux de voir ces figures accompagnées d’un commentaire sur le “télescopage entre modèle
physique et modèle mathématique”. Que dire alors du microscope de la
question posée ?

Mais nous préférons terminer en nous posant la question que suscitent naturellement de
nombreuses observations de réactions analogues chez des élèves de niveaux scolaires
variés : l’attitude évoluée ne serait-elle pas la seule qui procure une stabilité ?