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The aim of the present paper is to give an account of the holistic approach to
mathematical education developed in the project “mathe 2000”. The emphasis is on the

mathematical roots. It will be shown how a special view of mathematics as the science
of patterns can be made practical in developmental research. The paper consists of three

sections: A short introduction into the project’s philosophy in the first section is

followed by the description of some typical learning environments. In the third section
some underlying theoretical principles are explained by referring to the learning

environments of section 2.

1. The project „mathe 2000“

In 1985 the State of Nordrhein-Westfalen adopted a new syllabus for mathematics at the
primary level (grades 1 to 4). This syllabus coined by Heinrich Winter, the German

Freudenthal, marked an important turning point in the history of mathematical

education in Germany and exerted an enormous influence on the mathematical
education of all levels. Three innovations are particularly remarkable:

(1) A prominent role is given to the four so-called “general” objectives of
mathematics teaching which reflect basic components of doing mathematics at

all levels: ”mathematizing”, ”exploring”, ”reasoning” and ”communicating”

(Winter 1975).
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(2)  In a special paragraph the complementarity of the pure and the applied aspect of

mathematics is stated explicitly, and its consequences for teaching are described

in detail.

(3) The principle of learning by discovery is explicitly pre-scribed as the basic

principle of teaching and learning.

In order to support teachers in putting this syllabus into practice ”mathe 2000” was

founded in 1987 as a developmental research project with a clear practical orientation:

according to the conception of mathematics education as a ”design science” (Wittmann
1995) the following core areas have been closely linked and pursued simultaneously:

the design and the implementation of coherent sets of substantial learning (learning
trajectories) as the major parts, pre-service and in-service teacher education in both

mathematics and didactics, empirical studies into children‘s thinking and into the

communication in the classroom, as well as counseling.2

The main source of the developmental research in “mathe 2000” is mathematics - in

clear distance from other lines of research in mathematics education including the

international movement of “measurable standards”3 which are based on psychology,
cognitive science and general education. “mathe 2000” has adopted an understanding of

mathematics as the science of patterns (Sawyer 1955, Devlin 1995), however, with an
important additional accent: what matters is not the science of ready-made and static

patterns but the vital science of dynamic patterns which can be developed globally in

the curriculum as well as explored, continued, re-shaped, and invented locally by the
learners themselves. In other words: long-term and short-term mathematical processes

count much more than the finished products. The work of British, Scottish, Dutch and
Japanese mathematics educators in the sixties and seventies as well as the pace-setting

work by Heinrich Winter has served as a model (Fletcher 1965, Wheeler 1967, IOWO

1976, Becker Shimada 1997, Winter 1984, 1987, 1989).
Like the developmental research undertaken in other projects, in particular at the IOWO

in Utrecht under Hans Freudenthal’s guidance (cf., IOWO 1976) and recently at the

                                                  
2 For an overview of „mathe 2000“ see http://www.uni-dortmund.de/mathe2000/
3 For a critical review of PISA see Müller, G.N., Steinbring, H. and Wittmann, E.Ch.: Jenseits von PISA.
Bildungsreform als Unterrichtsreform. [Beyond PISA. Educational Reform as Reform of Teaching and
Learning]. Seelze: Kallmeyer 2002, Paperback 96 p.
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CREM in Nivelles (cf., Ballieu & Guissard  2004), “mathe 2000” has been aiming at a

coherent and consistent program for the whole spectrum K – 12 and teacher education.

So far the curriculum development has focused on the Kindergarten and primary level
as well as on teacher education for the primary level. For this reason the majority of

learning environments in the following section is taken from these areas.

2. Typical examples of substantial learning environments

In Wittmann (2002, 2) a substantial learning environment has been defined as follows:

(1) It represents central objectives, contents and principles of teaching mathematics

at a certain level.

(2) It is related to significant mathematical contents, procedures and processes

beyond this level, and is a rich source of mathematical activities.

(3) It is flexible and can be adapted to the special conditions of a classroom.

(4) It integrates mathematical, psychological and pedagogical aspects of teaching 

mathematics, and so it forms a rich field for empirical research.

The first two properties ensure that an SLE is firmly rooted in both the curriculum and
in elementary mathematics from an “advanced point of view”, the last one guarantees

that it reflects the processes of teaching and learning a comprehensive way. The
adjective “substantial” refers to mathematical substance.

When constructing an SLE the designer is guided by the natural flow of mathematical

activity: the starting point of an investigation is always a real or mathematical situation.
In the first phase this situation is mathematized or embedded in a broader mathematical

framework. Then the emerging structures are explored experimentally with the aim to
find patterns and solutions. If tentative patterns have been confirmed by various checks

reasoning is called for in order to explain and validate the patterns and the solutions.

The last phase of the mathematical process consists of communicating the results, orally
or in written form. Obviously Winter’s four general objectives reflect exactly these four

phases perfectly. That is the reason why they are so important.
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In “mathe 2000” the design of SLEs is at the same time consciously guided by the

definite intention to integrate the practice of basic skills into the investigation of

patterns. As will be shown in section 3 this aspect is crucial for a successful
implementation of any innovative program.

How this design philosophy is brought to bear will be illustrated in the next section by
means of some typical trajectories of substantial learning environments which are taken

mainly from two “mathe 2000” materials: “Das kleine Zahlenbuch” written for early

mathematical education in Kindergarten (Müller&Wittmann 2002/2004) and “Das
Zahlenbuch”, a textbook for grades 1 to 4 (Wittmann&Müller 2004/2005).

2.1  The race to 20 and some variations

Vol. 1 of “Das kleine Zahlenbuch” contains a simple version of the well-known race to

20: A line of circles is numbered from 1 to 10 (another one from 1 to 12). The first

player starts by putting 1 or 2 counters on the first circle or the first two circles, the

second player follows by putting 1 or 2 counters on the next circles similarly.

Continuing in this way the players take turns until one of them arrives at the target and

in doing so wins the game.

The „race to 10“ helps to found basic arithmetical ideas, for example relationships of

numbers on the number line, addition, and repeated addition. While playing the game

repeatedly children get more and more familiar not only with the number line but also

with the mathematical structure of the game. By analyzing the moves backwards

children realize step by step and more or less that the positions 7, 4 and 1 are winning

positions. So the first player has a winning strategy: In the first move of the race to 10

Fig. 1
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she puts down two counters and then responds to a 2-counters move of the second

player with a 1-counter move and to a 1-counter move of her opponent with a 2-

counters move. In this way the first player jumps from one winning position to the next

one and finally arrives at 10. In the race to 12 the winning positions are 9, 6, 3.

The race to 10 is a fully-fledged piece of mathematics. In fact the basic ideas of

analyzing these games can be generalized to the wider class of finite deterministic

games of strategy for two persons with full information which cannot end in a draw:  by

means of the game tree and the marking algorithm one can prove that for each of these

games there exists a winning strategy either for the first or the second player.

As our empirical studies show 4 to 5year-old children play this game with great

pleasure and develop some first insight into the winning strategy. Generally, this

knowledge is fairly instable at this level. A few days later most children have to re-

discover what they seemed to have mastered before.

In grade 1 the game is re-visited with targets up to 20. In grade 2 a variation is played

on the hundred chart (Fig. 2): At the beginning one player puts a red counter on the

number 1, her partner puts a blue counter on the number 100. Now the players take turn:

the red counter is moved up 1, 2, 10 or 20 fields, the blue counter is moved down 1, 2,

10 or 20 fields. As an additional rule it is stated that the red counter must always cover a

number which is smaller than the number covered by the blue counter. Therefore the

game stops when the two counters meet. The last player who is able to move is the

winner.

The gap between 1 and 100 consists of 98 numbers and as 98 is congruent 2 mod 3 the

first player has a winning strategy: the red counter is first moved to 3 or the blue counter

to 98. Then the gap consists of 96 numbers and 96 is divisible by 3. As 1, 2, 10 and 20

are not divisible by 3, and the sums 1 + 2 = 2 + 1 = 3, 10 + 2 = 2 + 10 = 12, 10 + 20 =

20 + 10 = 30  and 20 + 1 = 1 + 20 = 21 are all divisible by 3 the first player can always

manage to leave a gap which is divisible by 3 while the second player can’t. Each move

reduces the gap which finally must become 0. As 0 is a multiple of 3 this position is

reached by the first player – if she sticks to the winning strategy.

In grade 3 a generalized version of the game is played on the “thousand book”: The red

counter starts from 1, the blue one from 1000. The allowed moves are +1, +2, +10, +20,



6

+ 100 or + 200 resp. –1, –2, –10, –20, – 100 or – 200. The winning strategy is analogous

to the winning strategy for the hundred chart.

In grade 5 all games will be revisited and analyzed by means of the divisibility

arguments mentioned above.

2. 2 Patterns of counters

Vol 1. of “Das kleine Zahlenbuch” contains also the following game: Children are
presented series of red and blue counters which follow certain rules (Fig. 3).

This game was inspired by the following section from Richard Feyman’s address when

he was awarded the Nobel Prize for Physics in 1965 (Feynman 1969):

When I was very young – the earliest story I know – when I still ate in a high

chair, my father would play a game with me after dinner. He had brought a whole

lot of old rectangular bathroom floor tiles from some place in Long Island City.

We set them up on end, one next to the other, and I was allowed to push the end

one and watch the whole thing to go down. So far so good. Next, the game

improved. The tiles were different colors. I must put one white, two blues, one

white, two blues, and another white and then tow blues – I may want to put

another blue, but it must be a white. You recognize already the usual

insidiousness: first delight him with play, and then slowly inject material of

educational value. My mother who is a much more feeling woman began to

realize the insidiousness of his efforts and said: “Mel please, let the poor child

put a blue tile if he wants to.” My father said; “No, I want him to pay attention to

patterns. It is the only thing I can do that is mathematics at this earliest level.

Our empirical studies show that most children need time to understand what it means to

follow rules and to stick to them. If they have reached this level they like to invent their

...

...

...Fig. 3
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own patterns, however, many of them tend to change their rule while forming a

sequence – in particular if the game is played with a partner whose job is to discover the

rule.
The construction of sequences according to given rules is a basic mathematical idea

which permeates all mathematics. Therefore sequences occur again and again in all
curricula.

2.3 Odd and even numbers

Counters are a fundamental means of representing numbers. Usually they are seen as
teaching aids. However, their status is primarily not a didactic, but an epistemological

one: Greek arithmetic at the times of Pythagoras underwent a period which is called

“ψηϕοι-arithmetic” and can be considered as the cradle of arithmetic (Becker 1954, 34-

41, Damerow/Lefèbre 1981). “ψηϕοι” is the Greek word for little stones which the

ancient Greek mathematicians used for representing numbers and classes of numbers.
For example, they represented even numbers by double rows of stones, and odd

numbers by double rows and a singleton. More complex patterns define other classes of

numbers, the so-called “figurate numbers”: triangular numbers, square numbers,
pentagonal numbers, etc.

In the “mathe 2000” curriculum odd and even numbers are introduced in grade 1 in the
old Greek way by means of counters (Fig. 4).

These patterns are printed on cardboard so that children can combine them and form
sums.

The first exercises are to make the children familiar with the material. Based on these
experiences children are then asked to find sums with an even result. This task is a first

Fig. 4
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suggestion to look at the structure more carefully. The subsequent task is more direct:

After calculating the four packages of sums in Fig. 5 children are asked “What do you

notice? Can you explain it?”

At this early level teachers are expected to refrain from pushing the children. All that

teachers have to do is to listen to children’s spontaneous attempts of making some sense
of the data.

In grades 2 and 3 even and odd numbers are revisited in wider number spaces. Children
are given packages of exercises similar to those in Fig. 5 with bigger numbers and asked

the same questions. At this level the even/odd patterns are recognized and expressed in

the children’s own words. The teacher’s manual strictly recommends to be content with
children’s spontaneous explanations and not try to enforce a proof.

In grade 4, however, children have enough experience with even and odd numbers so

that the following task can be set which explicitly demands a proof:
Even numbers can be represented by double rows, odd numbers by double rows and

a singleton.

Use this representation to prove that

a) the sum of two even numbers is always even,

b) the sum of two odd numbers is always even,

c) the sum of an even and an odd number is always odd.

Children realize that no singletons occur when even patterns are combined, that in the

case of two odd patterns the two singletons form a pair and yield again an even result.

Furthermore children recognize that the singleton is preserved if an even and an odd
pattern are combined and that in this case the result is odd. The teacher’s task is to take

up children’s attempts and to assist them in formulating coherent lines of argument.

  4 + 6 =
  6 + 8 =
  8 + 4 =
10 + 2 =
12 + 8 =

5 + 1 =
7 + 3 =
9 + 5 =
5 + 7 =
9 + 9 =

  2 + 1 =
  4 + 3 =
  6 + 5 =
  8 + 7 =
10 + 9 =

1 + 8 =
3 + 6 =
5 + 4 =
7 + 2 =
9 + 0 =

Fig. 5
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As the usual formal proof expresses exactly these relationships in the language of

algebra it is well prepared by operations with patterns of counters.

2.4 Arithmogons

This very substantial learning environment was stimulated by a wonderful article which

was published 30 years ago (McIntosh&Quadling 1975). The authors’ original

geometric setting has been somewhat changed in order to allow for using counters (Fig.
6): A triangle is divided in three fields. We put counters or write numbers in these

fields. The simple rule is as follows: Add the numbers in two adjacent fields and write
the sum in the box of the corresponding side.

Various problems arise from this context: When starting from the numbers inside, the

numbers outside can be obtained by addition.  When one or two numbers inside and
respectively two numbers or one number outside are given the missing numbers can be

calculated by addition or subtraction.

When the three numbers outside are given (Fig. 7), an immediate calculation is not
possible, so some thinking is required. Firstgraders can find the solution by (more or

less) systematically varying the number of counters in the inner fields. There are,

however, also systematic solutions which arise in the course of a continued study of
arithmogons in the following grades.

In grade 4 children are guided to discover a systematic solution: In the first step they

complete some arithmogons and calculate the sum of the numbers inside and the sum of
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the numbers outside. They discover that the latter sum is double as much as the first one

and prove it by pointing out that each inside number contributes to two outside

numbers. In the second step students are asked to subtract an outside number from the

sum of the inside number and discover that the result is the inside number opposite to

the outside number. The two first steps can be summarized to determine the inside

numbers from the outside numbers.

At the secondary level arithmogons will be used to solve arithmogons by means of a

linear equation. The early method of systematically varying the numbers is a very good

help for finding the equation (Fig. 8).

Arithmogons can be extended to quadrilaterals, where new phenomena arise: Either we

have more than one solution (Fig. 9) or no solution (Fig. 10). For the existence of
solutions it is necessary and sufficient that the sums of opposite numbers are equal.

(Each of these sums is the sum of all inner numbers.)
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Of course arithmogons can also be generalised to polygons with n sides.

The mathematics behind arithmogons is quite advanced: the inner and outer numbers

can be written as vectors, and the relationship between them is a linear mapping from Rn

into Rn. Interestingly the corresponding matrix is non-singular for odd n and has the
rank (n–1) for even n (McIntosh&Quadling 1975).

The two-dimensional structure of arithmogons can be generalized to “arithmohedra” in

an obvious way: Numbers are assigned to vertices and faces of a polyhedron such that

the numbers assigned to the faces are the sum of the numbers assigned to the vertices of
this face. In this way a rich variety of examples can be created. This material can be

explored by College students and student teachers in a course on Linear Algebra with
great gains. All phenomena and all concepts relevant for the theory of systems of linear

equations occur and can be explained in this context, up to Steinitz’ theorem and the

dimension theorem. For student teachers it is most important to see their mathematical
education in the professional context as will be explained in section 3.

2.5 ANNA Numbers

Four-digit palindromes like 6446, 1221, 7007, are called ANNA numbers. For any
ANNA number there is a natural partner with the same digits, for example 2332 and

3223, 5885 and 8558. A nice piece of mathematics arises from the following simple

exercise: Fourthgraders are asked to choose two digits, to form the two possible ANNA
numbers and to subtract the smaller number from the bigger one. When the results of

the calculations obtained by the children are collected, checked, improved, and ordered
it turns out that only a few results are possible: 891, 1782, 2673, 3564, 4455, 5346,

6237, 7128, 8019 (and possibly 0 if numbers like 2222 are accepted as ANNA

numbers). The sequence of these results contains not only interesting patterns as far as
the sequences of the place values are concerned: surprisingly, all numbers are multiples

of 891.
The structure becomes even richer when the tasks are assigned to the results. For

example, the result 2673 belongs to tasks like 5225 – 2552, 7447 – 4774, 4114 – 1441

etc. that is to all tasks for which the difference of the digits is 3. It turns out that in
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general the difference of two ANNA numbers with the same digits is 891 times the

difference of their digits.

This phenomenon can be proved and explained in various ways by using representations
with which students are familiar. One proof uses the place value table as follows:

In order to get from 3443 to 4334 on the place value table one counter from the
hundreds column has to be pushed to the thousands column and one counter from the

tens column has to be pushed to the ones column. So the difference of the numbers is
1000  – 100 – 10  + 1 = 891. These operations can be applied to all ANNA numbers

whose digits differ by 1. If the difference d between the digits is bigger than 1, then d

pairs of counters have to be moved from the hundreds and tens columns to the
thousands and ones columns. This means that the difference between these ANNA

numbers is d times 891 (see Fig. 11 for d = 2).
A similar investigation can be conducted for NANA numbers. Here all differences are

multiples of 1000 – 100 + 10 – 1 = 909.

ANNA and NANA numbers do not come out of the blue in grade 4. They are well
prepared by similar activities with ordinary two-digit numbers in grade 2 and three-digit

palindromes in grade 3 (IMI numbers). Here the possible results are multiples of 9 and
91.

In grade 5 the place value table will be used in this way to prove the rule of the

divisibility by 9 and 3 as shown by Winter 1985.

2.6 Fitting polygons

A fundamental idea of elementary geometry is „Fitting“. Freudenthal (1969, 422-23)

describes it as follows:

Fig. 11

Th H T O
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In paving a floor with congruent tiles there is a leading idea, I mean fitting. It is

the same as in space and it is realized as concretely. Fitting is a motor sensation.

Psychologists can tell you how strongly the motor component of the personality is

marked at a young age, how important motor apprehension and memory may be.

Things fit. Do children ask why? Apart from a rare exception young children do

not. All these miracles of our space do not seem to make any impression. But they

grind as millstones. The highest pedagogical virtue is patience. One day the child

will ask why, and there is no use starting systematic geometry before that day has

come. Even worse: it can really do harm.

Children decompose square paper in two or four parts by folding and cutting along axes

of symmetry and re-arrange the parts in various ways. Many of the new figures will

become important later in the curriculum. For example: The four isosceles rectangular
triangles of two small squares can be put together to make one big square  - a special

case of the Pythagorean theorem.

To develop „fitting“ over the grades the “mathe 2000” curriculum starts in grade 1 with
paper and scissors activities (Fig. 12). A square is decomposed into two or four

isosceles right triangles and the parts are recombined to make other figures.

In grade 2 this activity is extended: square paper is folded and cut such that equilateral
triangles and halves of equilateral triangles are obtained (Fig. 13). One of the figures

which can be made by these forms is well-known as a foundation of the Pythagorean

theorem.

Fig. 12 Fig. 13
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Fitting regular polygons is done in grade 3 by means of a template which allows for

drawing squares, regular triangles, pentagons, hexagons and octagons with the same
side length. Children can explore experimentally which figures fit which way. They

realize that there are only three regular tessellations and discover some semi-regular
tessellations.

In grade 4 children make regular polygons from cardboard by means of the „drawing
clock“ (Fig. 14) and build the five Platonic solids. The name „drawing clock“ is derived

from the fact that a circle is divided into 60 equal parts. As 60 is divisible by 3, 4, 5 and
6 the drawing clock allows for a convenient construction of squares, regular triangles,

pentagons, hexagons and octagons. For example, to draw a regular polygon one has to

divide the circumference in five equal parts of “12 minutes” each and connect the
points. When drawing clocks of different sizes are used polygons of different sizes are

obtained. The shapes are copied on cardboard. The circular segments attached to the
sides of the polygons can be folded down and used as to paste the polygons together. In

this way children can make stable models of all five Platonic solids. The proof of the

existence of at most five Platonic solids at the end of book 13 of Euclid’s “Elements of
Mathematics” is fully in line with children’s arguments.

In grade 5 cutting and fitting experiments with polygons will be used to found the
concept and the measure of an angle what again corresponds to the historic development

(Becker 1954, 27). In the following grades cutting polygons into pieces and re-

combining these pieces is the usual way to the area formulas and to the Pythagorean

Fig. 14
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theorem (Wittmann 1995, 134 – 136). In the “mathe 2000” curriculum it is well

prepared by specific activities which start in grade 1.

2.7 Conic sections

In an address at the beginning of the 20th century J.J. Sylvester stated:

The discovery of the conic sections, attributed to Plato, first threw open higher

species of form to the contemplation of geometers. But for this discovery, which was

probably regarded in Plato's time and long after him, as the unprofitable amusement

of a speculative brain, the whole course of practical philosophy of the present day, of

the science of astronomy, of the theory of projectiles, of the art of navigation, might

have run in a different channel; and the greatest discovery that has ever been made

in the history of the world, the law of universal gravitation, with its innumerable

direct and indirect consequences and applications to every department of human

research and industry, might never to this hour have been elicited.

It is one of the clear signs of the decline of mathematical education in the past decades

that conics have been more or less eliminated from the curricula. In the “mathe 2000”
curriculum an attempt will be made to re-install them as far as the boundary conditions

permit.

The treatment of conics can start already in the primary school. In grade 4 of the “mathe
2000” curriculum the pedal construction of a parabola is introduced as an exercise in the

use of a ruler (Fig. 16). Students are stimulated to observe what happens if the position

of the focus is changed. Some children get excited with this construction.

 Fig. 16 
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In grade 5 the envelope constructions of the conics will be introduced similarly via

exercises for constructing the midpoint and the perpendicular bisector of a segment. A

parabola is defined as the locus of all points which have the same distance from a point
F and a line d. The construction arising from this definition is very simple (Fig. 17):

First a line d is drawn and a point F outside this line is selected. Then the following

construction is repeated for a set of points Q on d: For each segment FQ the
perpendicular bisector m is drawn and intersected with the perpendicular line l erected

on d in Q. By construction the point of intersection S has equal distance from F and d.
The existing software for dynamic geometry is an ideal tool in order to draw and

animate the locus of S.

Based on the observed phenomena the focal property of a parabola can be explained,
that is proved, in later years: The point S is the only point on m and on the parabola,

because the distance of all other points on m from d is smaller than their distance from

F. In analogy to the tangents of a circle the line m is called a tangent to the parabola.
Now, a ray of light which is emitted from F and hits the parabola in S is reflected as if it

would hit the plane mirror m. Therefore the reflected ray seems to come from the mirror
image Q of F, that is, the reflected ray coincides with l. So all reflected rays leave the

parabolic mirror as a bundle of parallel rays.

In a similar way the other conics can be defined and explored. The case of the ellipse is
particularly interesting. It plays a crucial role in Feynman’s lost and rediscovered

lecture in which he derived the Kepler ellipses by revising the derivation in Newton’s
“Principia mathematica” (Goodstein/Goodstein 1996). Feynman’s approach is

elementary and can be integrated into the upper secondary curriculum as well as into

l
m

d

SF

QFig. 17
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teacher education. In this way students and student teachers can become familiar with

Newton’s epoch-making achievement.

3. Theoretical Reflections

The old Greek “θεορια”means “holistic view” and in this sense the role of theory

consists of establishing common links within a field of experience. Accordingly the

following theoretical reflections refer to principles underlying the design of the learning
environments of the preceding section.

3.1 The quasi-empirical nature of mathematics and the selection of representations

The most important common feature of these learning environments is the following
one: the activities in exploring of patterns and finding proofs depend on appropriate

representations of mathematical objects in question. It was I. Lakatos who in his
masterpiece “Proofs and Refutations” (Lakatos 1979) first pointed to the fact that

mathematical theories are always developed in close relationship with the construction

of the objects to which they refer. Graph theory grows with the construction of graphs,
group theory grows with the construction of groups, theories of coding with the

construction of new codes, and so on. These mathematical objects form a kind of
“quasi-reality” which permits the researcher to conduct experiments similar to

experiments in science (see also Dörfler 1991). The availability of computers has

greatly enhanced the access to these “quasi-realities”.
In a recent paper an eminent research mathematician wrote (Arnold 1998, 229, 233):

“Mathematics is a part of physics… I get the impression that mathematicians who

have little knowledge of physics believe in the principal difference of axiomatic

mathematics from the modeling which is common in natural science and which

always requires the subsequent checking of deductions by an experiment.

Every working mathematician knows that, without some form of control (best of

all by examples), after some ten pages half the signs in formulae will be wrong

and twos will find their way from denominators into numerators. The technology

of combating such errors is the same external control by experiments or
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observations as is to be found in any experimental science and it should be taught

to all juniors in school.”

In general education informal representations of mathematical objects are indispensable
as they provide a “quasi-reality” which is easier to grasp and to work on than symbolic

representations. An important role is played by geometric representations as geometry is
a language which mediates between natural language and algebra (Thom 1973, 206 -

209). The selection of representations which incorporate fundamental mathematical

structures needs careful consideration (see Wittmann 1998 for arithmetic).  The learning
environments in section 3 are based on the number line, counters, calculations with

numbers, the place value table, models of polygons, and drawings.

3.2 The double role of representations

Representations of mathematical objects form a kind of interface between pure and

applied mathematics. They can be seen as concretizations of abstract mathematical

concepts and at the same time as representations of real objects. Compared with the
abstract objects these representations are more concrete than the mathematical objects

which they represent, and compared with the real objects which they model they are
more abstract. Conics provide a striking example for the amphibian-like double role of

representations: On the one hand a drawing of an ellipse is a concrete representation of

the mathematical object “ellipse” and on the other hand a schematic representation of
any real elliptic shape, for example a lithotripter for breaking up kidney stones, a mirror

of a telescope or the orbit of a planet.
Another example is provided by counters. On the one hand collections of counters can

be considered as concrete models of abstract numbers. Operating with counters allows

for proving relationships between numbers, for example between even and odd
numbers. On the other hand counters can be used to model real situations. The

following task for first graders is typical:
10 children on a playground have to be assigned to an Indian tent and a climbing

stage according to various boundary conditions, for example:

 (1) 3 children are playing in the Indian tent.

 (2) Half of the children are playing on the climbing stage.
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 (3) There are two more children playing in the Indian tent than on the climbing stage.

For solving these word problems the Indian tent and the climbing stage are drawn on a
sheet of paper, the 10 children are represented by 10 counters and these counters are

shuffled around in order to meet the conditions.
Studying mathematical objects via representations which are possible models of reality

is the best preparation for mathematical applications. Contrary to real objects or models

of real situations which are charged with various constraints mathematical objects allow
for unlimited operations and for establishing theoretical knowledge which is much more

applicable than knowledge directly derived from mathematizing real situations.
From this perspective the widely held view that mathematics which is taught in general

education, in particular at the lower levels, should in principle be derived from and

closely related to applications is an educational error.

3.3 Operative proofs

By working with appropriate representations of mathematical objects sound proofs of

general statements become possible. In the race to a target number (2.1) the winning
strategy depends on looking at pairs of moves independently of the special positions.

The proof of the theorem about even and odd numbers (2.3) uses operations with double

rows and singletons whereby the size of the numbers does not matter.  The relationship
of the inner and outer numbers of an arithmogon (2.4) does not depend on special

numbers but only on the rule for calculating the numbers outside from the numbers
inside. The proof of the pattern underlying the possible differences of pairs of ANNA

numbers  (2.5) is based on operations with the place value table. The tesselations and

solids made of regular polygons (2.6) arise from combining polygons and the effects of
fitting. At the primary level these effects are taken for granted. Later in the curriculum

they will be corroborated by means of the angle concept. The proof  (2.7) of the focal
properties of the parabola is based on the envelope construction.

The crucial point of this type of proof has been clarified by Jean Piaget in his

epistemological analysis of mathematics: Mathematical knowledge is not derived from
the objects themselves, but from operations with objects in the process of reflective
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abstraction („abstraction réfléchissante“, Beth/Piaget 1961, 217-223): When it is

intuitively clear that the operations applied to a special object can be transferred to all

objects of a certain class to which the special object belongs then the relationships based
on these operations are recognized as generally valid. As these proofs draw from the

effects of operations on the objects under consideration they are called “operative
proofs” (Semadeni 1974, Kirsch 1979, Jahnke 1989, Wittmann 1995, 144- 148, 154-

160).

The advantage of operative proofs in the context of education is obvious: These proofs
are embedded in the investigation of problems, closely related to the quasi-experimental

investigation of patterns, based on the effects of operations, and communicable in a
simple problem-oriented language.

ANNA numbers may serve as an example. The conceptual relationship on which the

pattern of differences rests can be stated formally in two lines:
If A > N then (A · 1000 + N ·100 + N · 10 + A) – (N · 1000 + A · 100 + A · 10 + N) =

(A – N) · (1000 – 100 – 10 + 1) = (A – N) · 891.

This proof, however, is useless for primary mathematics and teacher education for this
level.

3.4 The epistemological triangle

In his empirical research into teaching/learning processes Heinz Steinbring has
introduced the epistemological triangle (Steinbring 2005, 22, Fig. 18). The

epistemological triangle is an expression of the fact that learners cannot grasp a
mathematical structure solely at the symbolic level. The mathematical concepts carrying

    Mathematical structure

Reference contexts Symbolic descriptions
of the structure

Fig. 18
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the structure become meaningful only via reference contexts in which the structure is

embodied and which allow for conducting experiments. The experiences gathered in

working within reference contexts form the basis for social exchange with the teacher
and among the students.

The example of ANNA numbers is good illustration. Children cannot capture the
conceptual relationships in their symbolic setting. They need calculations with special

ANNA numbers and the place value table as a reference context in order to explore,

explain and understand the pattern.

3.5 Productive practice

What really counts for the long-term mastery of a piece of mathematics is not how it is

introduced but how it is practiced: Repetitio est mater studiorum. The history of

mathematics teaching shows that many attempts of reforming mathematics teaching

have failed because they neglected the practice of basic skills. Teachers will reject

programs in which an essential component of teaching and learning is missing, and they

are right to do so. Traditionally the practice of skills has been firmly rooted in the

school system and in textbooks in the legendary form of “drill and practice”.

Developing mathematics as the science of patterns is not compatible with this system.

In order to resolve this seeming dilemma a novel approach to practicing skills is needed.

In another of his epochal papers Heinrich Winter showed how the practice of skills can

be reconciled with the principle of learning by discovery (Winter 1984). In elaborating

on Winter’s ideas the concept of “productive practice” has been developed and the

design of substantial learning environments for practicing skills was put into the very

centre of “mathe 2000”. For constructing productive exercises one has to look for

patterns whose experimental investigation involves the repeated execution of a certain

skill.  The learning environments “odd and even numbers” (2.3), „arithmogons“ (2.4),

“ANNA-numbers” (2.5) and “conics” (2.7) are typical examples of „productive

practice“. The two volumes of the „Handbook of practicing skills“ (Wittmann&Müller

1990, 1992) contain coherent sets of substantial learning environments for introducing

and practicing the central topics and skills of the primary curriculum like the addition

table, multiplication table, informal arithmetic and standard algorithms. It is likely that
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the success of the “mathe 2000” primary curriculum in several countries is due to this

integrative approach.

Besides productive practice the „mathe 2000“ curriculum also contains a systematic
course in mental arithmetic which is called „Blitzrechnen [Calculightning]“.4 Within a

conception of mathematics as the science of patterns a firm mastery of techniques is a

sheer necessity for the exploration of patterns,

3.6 Teacher Education

It goes without saying that the reform of mathematics teaching based on a view of

mathematics as the science of patterns is greatly supported by a corresponding reform of

teacher education as teachers who have acquired first-hand experiences with

mathematical processes during their studies are much more likely to carry the reform

than teachers who have not.

The question is how teacher education can be organized in order to provide these

experiences best. Around the world there is a widely shared view among mathematics

educators that mathematics education proper (didactics of mathematics) is the key to

reforming teacher education, and therefore the main emphasis is put on courses in

didactics. However, there are good reasons to see the mathematical courses as the key of

reform. It is well-known that around the world mathematical courses or even whole

mathematical programs often make only little or no sense for student teachers: Either

the relevant subject matter is not covered at all, or the mathematical substance is stifled

by a formal style of presentation or, even worse, there is no substance: mathematics is

reduced to conceptual or procedural skeletons. This criticism refers also to recent

approaches to teacher education which have been explicitly announced as the

mathematicians’ answer to the problem of providing teachers with the “necessary

mathematical knowledge”. A typical example is a textbook which has been authorized

by the American Mathematical Society (Jensen 2003). According to the style of this

book ANNA numbers, for example, would be analyzed, if at all, in the formal way as

mentioned at the end of section 3.3.

                                                  
4 This course is available on a bilingual CD-ROM (German and English) which was awarded the German
Software Prize digita in 1997 (Krauthausen, Müller &Wittmann 1997/1998).
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As the “mathe 2000” experience shows teacher education can effectively be improved

by linking mathematical courses to substantial learning environments as far as both

subject matter and method is concerned. By definition SLEs are based on substantial

mathematics beyond the school level. Therefore every SLE offers mathematical

activities for student teachers on a higher level. However, disconnected mathematical

islands attached to scattered SLEs do not serve the purpose properly. What is needed in

teacher education are systematic and coherent courses of elementary mathematics which

cover the mathematical background of a variety of SLEs. To develop such courses is a

challenging problem for the future.

Within “mathe 2000” a special series Mathematics as a Process has been started which

tries to fill this gap. The first volume “Arithmetik als Prozess” has already appeared (cf.,

Müller, Steinbring&Wittmann 2004). As the title of the series indicates the emphasis is

on mathematical processes. Informal representations are preferred to formal ones

wherever possible. So student teachers are systematically given the opportunity to learn

the mathematical language which they need in their profession, not the language of

specialists which is useless or even harmful in communicating with students. To give an

example: in “Arithmetik als Prozess” the chapters on elementary number theory up to

the “little Fermat” are based exclusively on operations with the number line and with

rectangular patterns of dots. All proofs are operative proofs. In the tentative volume

“Algebra as a Process” the theory of linear equations will be centred around

arithmogons and arithmohedra as indicated in section 2.4.
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