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ACCUMULATIVE THINKING AS AN INTUITIVE BASE FOR THE
CONCEPT OF INTEGRAL

Abstract. Integral calculus presents persistent challenges for students in general and for those
transitioning from secondary to tertiary education in particular. This study examines the
development of "Accumulative Thinking" as a foundation for understanding integration. In
a purposely designed learning activity, pairs of Grade 11 students explored accumulation
concepts using the context of water flowing into a pool. Using the Abstraction in Context
framework, we analysed students’ processes of constructing knowledge during this activity.
Our findings indicate that most students constructed elements of Accumulative Thinking,
preparing them for future studies; the findings also demonstrate how real-world contexts can
facilitate the development of Accumulative Thinking.
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Résumé. Le calcul intégral présente des défis persistants pour les étudiants en général et pour
ceux qui passent de I’enseignement secondaire a I’enseignement tertiaire en particulier. Cette
étude examine le développement de « pensée accumulative » comme fondement a la
compréhension de D’intégration. Au cours d’une activité d’apprentissage spécialement
congue, des paires d’éléeves de la 11°™ année scolaire ont exploré des concepts
d’accumulation en utilisant le contexte d’eau coulant dans une piscine. En utilisant le cadre
d’« abstraction en contexte », nous avons analysé les processus de construction de
connaissances des éléves au cours de cette activité. Nos résultats indiquent que la plupart des
¢éléves ont construit des éléments de pensée accumulative, les préparant ainsi a des études
futures ; les résultats montrent également comment un contexte réel peut faciliter le
développement de la pensée accumulative.

Mots-clés. Calcul différentiel et intégral, accumulation, pensée accumulative, construction
de connaissances, transition secondaire-tertiaire.

Introduction

Learning and teaching calculus in general, and integral calculus in particular, is a
challenging issue at secondary and tertiary levels. This paper deals with a preparatory
learning activity offering students an opportunity to develop ways of thinking that
will be useful when studying integration with an accumulation approach. We call
such thinking Accumulative Thinking. There are at least two ways to consider the
didactical base for learning accumulation, as 'adding up pieces' and as derived from
Rate of Change (Ely & Jones, 2023). In the feasibility study presented here we
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mainly adopted the second way. The design of the learning activity and the
investigation of its implementation were informed by the theoretical framework of
Abstraction in Context (Dreyfus et al., 2015). The research reported in this paper
was conducted in continuous discussion and cooperation between an experienced
high school teacher of mathematics (the first author), an experienced tertiary teacher
of mathematics (the second author), and researchers (the second and third authors).
The findings of the research can serve as a didactic and methodological approach to
teaching and learning integral calculus throughout the educational continuum to
define a teaching perspective at the secondary level, to facilitate the transition to the
tertiary level, and to serve as a meaningful base at the tertiary level.

1. Background

1.1. The integral as an accumulating quantity

The concept of integral f; f(x)dx can be approached via the notion of anti-

derivative and/or via the notion of accumulation. The anti-derivative approach uses
the difference between the anti-derivative values at the upper boundary b and the
lower boundary a of the integral. The Function F(x) is an anti-derivative of the
function f (x) if F'(x) = f(x) for all x in the domain of f (x). If f (x) is a continuous
function in [a, b], there exist antiderivatives of f and if F(x) is one of the anti-

derivatives of f(x), then f:f(x)dx = F(b) — F(a).
The accumulation approach is based on quantitative reasoning (Thompson, 2022);
it considers the function f(x) to be the rate of change (RoC) of a quantity Q with
respect to the variable of integration x, and as a consequence, f; f(x)dx represents
the amount of Q accumulated as x varies from a to b. This connection is established
by the approximation of the integral as a sum of products according to Riemann, as
in
b—a

—

b n
f f(x)dx = Zf(a + (k- 1DAx)-Ax, Ax =
a k=1

Indeed, for given n, since f(a + (k — 1)Ax) is the rate of change of Q at the
beginning of the k" interval of length Ax, the product f(a + (k — 1)Ax) - Ax is (an
approximation of) the bit of quantity accumulated in the k™ interval, and the sum of
these bits over all intervals is the total quantity accumulated from a to b.

An accumulation function approximating the total quantity accumulated from a to x
forany a < x < b, is then defined naturally by
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Alx) = Z fla+ (k—1)Ax) - Ax + f(a + mAx)(x — (a + mAx))
k=1

where m is chosen so that mAx < x < (m + 1)Ax (Thompson & Ashbrook, 2019).
The function A(x) interpolates linearly between the values of the above Riemann
sum at the endpoints of the intervals x = a + kAx.

1.2. Research on integration as accumulation

In the special case where x is time, the products are of the form ‘length of time
interval” X ‘RoC with respect to time in that interval® (for example speed), and it is
particularly easy to grasp the quantitative nature of the bits that accumulate (for
example, bits of displacement). According to Thompson and Silverman (2008), in
order for students to see that the area under the graph of f represents a quantity, it is
important to understand that the accumulated quantity consists of incremental bits
which are created multiplicatively by two quantities the form f(x) - Ax.

Researchers have reported difficulties of students at the secondary as well as at the
tertiary level with the integral concept (e.g., Bressoud, 2009; Ely & Jones, 2023;
Jones, 2015a; Orton, 1983; Rosken & Rolka, 2007). Such difficulties arise, for

example, when dealing with the integral f; f(x)dx when f(x) is negative or when

b is less than a (Orton, 1983). When finding the area between a given graph and the
horizontal axis, where the graph is partially above and partially below the axis, it
was found that the students who solved correctly could not explain why. Kouropatov
and Dreyfus (2013) report that only 9% of 12t grade high school students in their
study agreed with the claim that if a continuous function f(x) is negative, then its
definite integral is negative; 58% answered that the integral will be positive and
explained that an integral is an area, and an area has a positive value. Even high-
ability students rarely acquire comprehension regarding the central concepts of
calculus; instead, in the best case, formal techniques allow them to answer exercises
(e.g., Thompson & Harel, 2021).

According to Thompson and Silverman (2008), in order to hold a well-structured
understanding of accumulation function, students need to coordinate three variables
simultaneously: the changing value of x, the value of the integrand f that changes
accordingly, and the value of the quantity accumulated up to x, which derives from
these changes of x and f, and which changes according to both. Hence, one of the
difficulties in understanding accumulation function arises from understanding
accumulation as a function which depends on another function. Students typically
encounter such complex covariation for the first time when learning about
accumulation.
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Constructing the integral concept based on the idea of accumulation has been shown
to be beneficial (Carlson, Smith & Persson, 2003; Kouropatov, 2016). Kouropatov
(2016) built and researched a teaching unit for the integral concept based on
approximation and accumulation; he concluded that this approach has clarified the
connection between integration and differentiation for the students and has allowed
them to realize the mathematical meaning of the integral. Carlson et al. (2003)
developed notions of accumulating quantities, accumulation functions and the
Fundamental Theorem of Calculus (FTC). Their students examined in detail the
incremental accumulation of various quantities, tying the idea of accumulation to the
notation. This approach resulted in a high success rate in terms of students’
conceptions of accumulation functions and their understanding of the FTC.

The understanding of integration as an accumulation process lies at the heart of the
comprehension of the underlying mathematical ideas as well as many applications
(Ely & Jones, 2023). The accumulation function has the potential to serve as a model
for different situations that describe continuous processes of everyday life.
Conversely, many such processes have the potential to illustrate accumulation.

In summary, research has established that the approach to integration based on the
idea of accumulation is efficient; in this paper, we propose to prepare such an
approach at the secondary level, thus contributing to a smooth transition to the
tertiary level. We will argue and present evidence that this can be done by
incorporating intuitive and tangible real-world examples and emphasizing the strong
connection between accumulation and RoC.

1.3. Extra-mathematical context

According to Gravemeijer and Doorman (1999), context problems are defined as
problems whose problem situation is experientially real to the student. In their
research they discuss the role of context problems in calculus courses as they are
used in the Dutch approach (known as Realistic Mathematics Education).

In their article, the extra-mathematical context of velocity and distance from a given
starting point is used to approximate the accumulated amount (distance from the
starting point) from a given function representing the rate of change (speed as a
function of time). The approximation is made using a step function by assuming a
constant velocity for each interval, which equals the value of the velocity function at
the left (initial) endpoint of the interval. This extra-mathematical context offers
students a way to act and reason meaningfully, and hence to develop informal,
context-dependent strategies; these informal strategies may help them later to
develop generalization and formalization of accumulation (Gravemeijer &
Doorman, 1999).
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The effect of extra-mathematical context on problem-solving has been widely
studied in various subjects, for example computer programming (Leinonen et al.,
2021), algebra (Bottge, 1999) and proportional thinking (Lawton, 1993). Research
in mathematics and science education reveals that it is difficult for students to apply
their mathematical knowledge in different contexts (Delice & Roper, 2006) as the
context requires an additional layer of the meaning to variables in the mathematical
expression in order to be applied in the science context (Dray & Manogue, 2005),
and particularly in integration problems (Alves et al., 2019; Jones, 2015a).

Carlson et al. (2003) developed curricular materials aiming to promote students’
understanding and reasoning abilities about the FTC, which contained tasks given in
an extra-mathematical context whenever possible. Twenty-four students were
assessed for their pre-calculus concepts at the beginning of the term and after
instruction. The extra-mathematical contexts used for the assessment were water
filling up a tank and distance traveled over time. The RoC function was provided
graphically in the tank context, and algebraically in the distance context. A third item
used a geometry context — a circle expanding in size. The questions asked in each
item were related to the FTC and the accumulation function. The results showed that
most students have completed the course with a strong understanding of notational
aspects of accumulation, as defined by the researchers. Such understanding includes
that the notation F(x) = [ f(x)dx means that F (which represents an accumulation
function) is an antiderivative of f, and that f is the RoC of F.

1.4. Abstraction in Context

Abstraction in Context (AiC) is a theoretical framework proposed by Hershkowitz
et al. (2001) for studying learners’ construction of new (to them) abstract
mathematical knowledge. The knowledge intended by the designer or teacher to be
constructed is analyzed a priori into knowledge elements that include concepts,
procedures, and strategies. In this paper, the relevant part of the a-priori analysis will
be presented in section 4 as part of the results since the design of a learning activity
and the analysis of the structure of the content forms an integral part of the research.
Learners’ processes of constructing these knowledge elements are then analyzed by
means of three observable epistemic actions: Recognizing (R) — the learner identifies
a previous construct as relevant to the task at hand; Building-With (B) — the learner
uses a recognized construct for achieving a local goal, and Constructing (C) — a new
construct emerges for the learner by recognizing and building-with previous
constructs. As R-actions are nested in B-actions and R- and B-actions are nested in
C-actions, Hershkowitz et al. (2001) proposed the name “dynamically nested RBC-
model”. The model and its use are described in more detail by Dreyfus et al. (2015).
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2. Rationale and research questions

The research presented in this paper approaches integration via accumulation; it aims
to give secondary students, who have not yet learned integration, an opportunity to
develop ways of thinking that will be useful in taking an accumulation approach to
integration at school as well as in later tertiary level studies. Such thinking will be
called in this research Accumulative Thinking.

We define Accumulative Thinking as a combination of specific knowledge and its
application:

1. Awareness of the nature and the multiplicative structure of the "bits" that are
accumulated, as well as the dynamism of the process of accumulating these
bits.

2. The ability to apply this knowledge, for example, to be able to use it for
reasoning about some characteristic of an accumulation function, such as its
concavity, when the RoC function is given graphically.

This paper focuses on the following questions:

1. What is the structure of Accumulative Thinking?
2. How do students construct the elements of Accumulative Thinking?

Research question 1 will be answered by an a-priori analysis of knowledge elements
that constitute Accumulative Thinking. This will result in a set of 16 knowledge
elements, out of which 10 knowledge elements that are relevant to this report are
presented in section 4. To answer research question 2, we will describe how students
construct these 10 knowledge elements (section 5).

The investigation of how students construct knowledge about accumulation (as being
dependent on a process that is being carried out on another function) is expected to
help improve the pilot design introducing accumulation presented below (section
3.2).

The teaching approach we design for the secondary level is expected to contribute to
the transition to the tertiary level, and to serve as intuitively acceptable and
meaningful base at the tertiary level. We expand on this in section 6. This is in line
with recent claims that the secondary-tertiary transition is neither continuous nor
discontinuous but both (Gueudet et al., 2016).

Carlson et al. (2003) used the accumulation approach to develop tertiary students’
understanding of the FTC (see sections 1.2 and 1.3); they presented problems using
various extra-mathematical contexts. Our research presents the accumulation
approach in the context of filling a pool; however, our mathematical focus is
different — it is to develop Accumulative Thinking in secondary students, so it can
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serve later as building blocks required for introducing the integral concept, including
the FTC.

3. Methodology

3.1. Research design and population

A learning activity was designed and piloted with a pair of grade 11 students who
study mathematics at an advanced level. The pilot gave insight into changes required,
and the learning activity was re-designed into a final version for this research.

In this research 6 students from two different schools participated; they all learn
mathematics in grade 11 at the advanced level. When they participated in the
research, the students had already learned the topic of differentiation but not yet that
of integration.

The students carried out the learning activity in pairs and were asked to collaborate
and discuss the tasks they were working on. However, each student had their own
learning activity sheet, which had space for answers, and the students were instructed
that in case there is a disagreement, each student will write their own answer. The
researcher (the first author) presented questions to the students only to clarify their
utterances and the mathematical meanings behind the course of action they took.

The interviews were audio-recorded and transcribed, and the transcriptions were
analyzed, together with the learning activity sheet of each student, using the RBC
model. The goal of this analysis was to gain insight into the learning processes of the
students.

3.2. The learning activity

The learning activity was designed following Tabach et al. (2008). To allow a
smooth transition from secondary to tertiary studies of the integral concept, the
activity we designed introduces accumulation to high-school students in an
elementary manner. The activity uses the context of water flowing into a pool and
deals with accumulation by leading the students to consider the bits that accumulate,
their structure as products of time duration x water flow rate, the effect the RoC
function — the rate of flow of water — has on the bits, and the accumulation function
as sum of the bits accumulated up to a given time. Thus, the tasks in the activity were
designed with the intention of leading the learners to build the function representing
the amount of water in the pool as a function of time.

The activity has three parts: the first part deals with the case of a constant RoC, the
second with the case of a RoC constant in segments, and the third with the case of a
linear and decreasing RoC. All RoC functions in this activity are positive since the
activity aims to serve as an introduction to accumulation.
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In the first part of the activity the students are given the constant rate at which a pool
is being filled with water. They are given consecutive time intervals and are asked
to fill in for each interval the time period, the rate of flow and the amount of water
added. This task was designed to offer an opportunity for the students to conclude
and use the multiplicative relationship of time duration x water flow rate = amount
added. The students are then asked about equal bits, meaning time intervals in which
the same amount was added. The students are asked to find the accumulated amount
for various points in time, based on the amounts they calculated previously. Next,
the students are asked to sketch the graph of the accumulation function of the given
constant RoC. In the next question the students are given a GeoGebra animation
where they may select start and end times. When executing the animation, the
rectangular area under the graph and above the time axis is being filled in from the
starting point and grows continuously to the end point of the selected time interval.
The students are asked questions about the graphical representation of each of the
elements in the above multiplicative relationship; they are offered repeated
opportunities to conclude that the area of the rectangle above a time interval
represents the amount of water added in that time interval, and to connect the
graphical representation with the numerical representation of the multiplicative
relation time duration % water flow rate = amount added. The animation aims to
help the students grasp visually the process of accumulation as a dynamic one.
Screen shots of this animation are provided in Figure 4 (section 5.4).

In the second part, which deals with the case of a RoC which is constant in segments,
the students are given two graphs, both constant in segments, representing the water
flow rate. The students are asked to draw the accumulation function for each water
flow rate and find the amount of water that was added in a given time interval, during
which the rate of filling up the pool changes. The amount added can be calculated
since the axes show units and values. In the following question, the students are
given two graphs, both constant in segments, on two identical coordinate systems
without units nor values on the axes. They are asked to determine if the amounts of
water accumulated in the pools are equal or not. This last part was designed to give
the students another opportunity to express that the area under the graph represents
the amount of water when the amounts accumulated cannot be calculated since the
coordinate axes are not labeled with units and values. This second part also deals
with tiny bits, where they are asked to calculate a bit by splitting it to two sub
intervals, where the second one is much smaller.

In the third part, the students are presented with the graph of a linear and decreasing
RoC, representing the water flow rate. They are asked about the amounts that are
added over time and requested to draw a sketch of the accumulation function giving
them an opportunity to conclude that the accumulation function is concave
downward.
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3.3. Data analysis

The data analysis consists of two stages: An a priori analysis and an analysis of the
interview data. The a priori analysis examines the learning activity in view of the
students’ previous knowledge. Its aim is to identify the knowledge elements the
designer of the learning activity intended the students to construct while carrying out
the activity. These knowledge elements are defined operatively. The a priori analysis
is presented in section 4.

The data from the interviews were analyzed according to the methodology of AiC.
First the interviews were transcribed and presented in a table which contains the turn
number, the speaker, the utterance and a fourth column for the epistemic actions.
The RBC model was used to identify epistemic actions of recognizing (R) a
knowledge element, building-with (B) a knowledge element and constructing (C) a
new knowledge element. These epistemic actions were marked along the
transcription. The RBC analysis is presented in section 5; a transcript with epistemic
actions is included in section 5.6.

4. The structure of Accumulative Thinking

The a priori analysis of Accumulative Thinking as defined in section 2 resulted in a
list of sixteen knowledge elements intended to be constructed by the students;
together, these knowledge elements constitute Accumulative Thinking. Each of them
has been given an operative definition, allowing the researcher to assess whether a
student has constructed the knowledge element (see Table 1). In addition, we
identified fifteen preliminary knowledge elements, assumed to have been
constructed earlier. For the economy of space, we only present an overview of the
preliminary elements; among the 16 main knowledge elements, we only present the
10, which are relevant to this paper, followed by a table with their operative
definitions. These knowledge elements will be illustrated in section 5, in parallel
with the analysis of the students’ work. This illustration includes two of the
preliminary knowledge elements.

Following the learning activity, the first few knowledge elements relate to the case
where the RoC is constant. The accumulating bits have a multiplicative nature since
the amount added in a time interval is the product of the length of the time interval
by the rate at which the quantity accumulates (knowledge element M nr:
Multiplicativity — numeric representation). The bit has a graphical representation as
the corresponding rectangular area (knowledge element M_gr: Multiplicativity —
graphical representation). The ratio of the amounts of water entering the pool in two
different time intervals equals the ratio of the lengths of the time intervals
(preliminary knowledge element P6 - proportion).
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In the case of a RoC that is constant in segments, the accumulation function is linear
in segments (AFCS), and the area under the RoC graph represents the amount of
water added (A_cs). In all cases, the accumulation process is dynamic, meaning that
the accumulation function gives the amount accumulated at any given time (AF).
Summing up consecutive bits within a given time interval results in the amount
accumulated in that entire time interval (S: Summing consecutive bits). Conversely,
the amount that accumulates in a time-interval can be split into two sub intervals,
where the second one is much smaller than the first sub-interval, for example, 10
times smaller (TB_r: Tiny Bit reduction). In the case of a linear and decreasing RoC,
the multiplicative connection time duration x water flow rate = amount added
cannot be used as is because the rate does not have a constant value. The idea of
instantaneous RoC is not appropriate for students at this stage of learning. Therefore,
it becomes imperative to use the area under the graph as representing the amount
added (A dl: Area — decreasing and linear RoC). The bits that accumulate are
graphically represented by the trapezoids, formed by the graph and the time axis
within a given time interval. As time increases, the amounts added (the bits) with the
same time duration are getting smaller (DB: Decreasing Bits). Hence, as the RoC
decreases, the accumulation function in this case is concave downward (AFDL:
Accumulation Function of a Decreasing Linear RoC).

Table 1. Knowledge Elements related to this article and their operative definitions

Knowledge Element | Abbreviation | Operative Definition

Multiplicativity - M nr In the case of constant RoC, the student
numeric expresses the multiplicative connection
representation between the quantities:

time duration x RoC = amount added.

Multiplicativity - M gr In the case of constant RoC, the student

graphical expresses that the amount of water

representation added equals the area under the graph in
a given time interval.

Accumulation AFCS The student draws the graph of the

function of a RoC accumulation function as continuous

constant in segments and linear in segments and describes the
amount added in a time segment using
M nrorM gr.

Area under the graph | A cs The student expresses that the total area

in case of a RoC under all segments up to the current

constant in segments
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Knowledge Element

Abbreviation

Operative Definition

time represents the amount
accumulated.

Accumulation
Function as a
dynamic process

AF

The student expresses that as time flows
water is being accumulated, and that at
any given time the accumulation
function gives the amount that has been
accumulated from the starting point in
time to the given time.

Summing
consecutive bits

The student expresses verbally,
graphically or otherwise, that the
quantity of water added in a time
interval equals the sum of the quantities
added in its consecutive time sub-
intervals.

Tiny Bit reduction

TB r

The student splits a given time interval
into 2 consecutive sub-intervals, the
second of which is much smaller than
the given time interval, and then the
student sums the two quantities added in
the sub-intervals to calculate the amount
added in the given interval.

Area — decreasing
and linear RoC

A dl

In the case of a linear decreasing RoC,
the student expresses that the area of the
trapezoidal geometric shape bounded by
the graph in a time interval represents
the amount added in that time interval.

Decreasing Bits

DB

The student constructed A_dl and
expresses that since RoC is decreasing
the amounts added in time intervals
with the same At are getting smaller
because the geometrical shapes
(representing the bits) are getting
smaller.

Accumulation
Function of a
Decreasing Linear
RoC

AFDL

The student constructed A_dl and uses
DB to justify the downward concavity
of the accumulation function.
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5. Students construct the elements of Accumulative Thinking

In this section, we present empirical evidence of construction processes of the
students Ana & Zoe, Roy & Don, and Tim & Nic, that contribute to Accumulative
Thinking. We use italics to mark the epistemic actions recognizing, building-with
and constructing. Detailed RBC analyses of all transcripts of the three pairs of
students have been carried out as explained in section 3.3. Here we present
summaries of at least one construction process for each knowledge element; for one
of them we demonstrate in detail how the analysis has been carried out by showing
a partial transcript and marking the epistemic actions for relevant utterances in
section 005.6. Tiny bit reduction (TB_r)(Table 2).

5.1. Multiplicativity — numeric representation of a bit (M_nr)

The activity starts with a pool being filled with water at a constant rate of 30 liters
per minute, which is described verbally. The students are given a table with
consecutive time intervals and are asked to fill in the length of the interval, the rate
at which the pool is being filled and the amount of water that is added in each time
interval.

Roy and Don express the numeric representation of a bit by multiplying the time
duration (second row, Figure 1) and rate of filling (third row) in each time interval
to get the amount of water that was added (fourth row). They also verbally describe
the multiplicative connection in their written answer. Hence they constructed M_nr.

mtyop* [ [0,1.4] | [1.4,2.0] [ [2.0,2.6] | [2.6,2.7] | [2.7,2.8] | [2.8,2.9]

' nt Ywn - e 06 i . i
() : : 2

7' axp

| (hpma )
o™m nind v

(hut7) noonw i l

At A% 3 3

Figure 1. Don's table. Rows' titles: 1% row — Time interval, 2" row — Time duration (min),
3" row — Rate of filling (liters per min), 4" row — Amount of water added (liters)

Ana and Zoe, however, don't express the numeric representation of a bit, but rather
recognize and build-with preliminary knowledge element P6 (the ratio of the
amounts of water flowing in two different time intervals equals the ratio of the
lengths of the time intervals) in order to find the amount added in each bit. For
example, to find the amount added by time interval [1.4,2.0], they first convert the
time duration from minutes (0.6) to seconds (36), then they calculate the amount
added in 36 seconds, as shown in Figure 2, by recognizing and building-with P6.
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X f

Figure 2. Using proportion to find bits by Ana and Zoe

In summary, while working on the described task, Roy and Don constructed the
knowledge element M_nr, while Ana and Zoe did not.

5.2. Summing up consecutive bits (S)

Summing up consecutive bits within a given time interval results in the amount
accumulated in that entire time interval (knowledge element S). In the first part of
the activity, dealing with a constant rate of flow, the students are asked to find the
amount accumulated up to various points in time (which correlated to the
consecutive bits shown in Figure 1). To do so, all three pairs sum up the amounts
of the consecutive bits up to the required one, and fill in the table, expressing
construction of knowledge element S. Figure 3 shows Tim's calculations, filling in
the second row the total amount of water that accumulated in the pool up to the given
minute in the first row.

Ty | 1.4 7720 [ 2.6 2.7 2.8 29 |
oM nnd ' ‘ [P ; 60+ | R+ [ 3] Ty i
A2M22 Anavyaw (A = = = = =
(o) "> o (2% 191 Isn ] &

Figure 3. Finding the accumulated amount by Tim.
Rows' titles: 1%t row — Up to minute, 2" row — Total amount of water that accumulated in
the pool (liters)

5.3 Initial thinking about accumulation (starting point of constructing the
accumulation function as a dynamic process — AF)

At the end of the first part of the activity, dealing with a constant rate of flow, the
students are given, for the first time, a definition of an accumulation function: y=A(?)
is a function that represents the amount of water that accumulated in the pool from
minute 0 to minute t. It is called an accumulation function. They are then asked to
draw the accumulation function for which they calculated the accumulated amounts
(see 5.1 and 5.2) and are asked why it is called an accumulation function. All pairs
drew a correct increasing straight-line graph; as to why it is called an accumulation
function, Zoe wrote:

The value of y, which represents the amount of water, increases based on the preceding
y value. Consequently, the water accumulates and rises without any instances of
descent due to accumulation.
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Roy (from a different pair) wrote:

Because the amount of water being added in each minute is constant, in every point
on the function, the y value accumulates and increases at 30 liters per minute.

While Zoe uses the pool context to explain the increasing property of the
accumulation function graph she drew, Roy uses the slope of the accumulation
function graph to explain why it increases. It is interesting, though, that both students
choose to explain why the accumulation function graph is increasing when
answering why the accumulation function is called that way. The students' answers
mark the starting point of constructing AF since both are describing (although in
different ways) the process of the accumulation of water in the pool.

5.4 Multiplicativity — graphical representation of a bit (M_gr) and
Accumulation Function as a dynamic process (AF)

Here we describe how students construct knowledge elements M_gr and AF when
working on the task with the GeoGebra animation (section 3.2). The process of
constructing of AF started prior to this task (section 5.3).

In the first part of the activity, which deals with a constant RoC, the students are
requested to select a time interval (start and end) and play the animation, where the
horizontal axis is time and the vertical axis is the flow rate. During the animation,
the area under the graph and above the time axis is being painted, from the starting
point and growing continuously to the end point of the time interval. As time flows,
the painted area increases. In Erreur ! Source du renvoi introuvable. there are 3
screen shots from the animation on the time interval [1.5,1.9]. The area is colored in
steps of 0.1 on the time axis, which makes the coloring process look continuous.
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Figure 4. Screen shots from the GeoGebra animation

5.4.1. Accumulation function as a dynamic process (AF)

After playing the animation as described above, the students are asked what the
animation illustrates.
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Roy and Don discuss the animation:
Roy:  Tunderstand, so the graph represents the rate... the amount of water...
Don:  Which was added...
Roy:  That is being added...
Don:  In the given period of time.
Roy:  In the given period of time, not in relation to the given period time, because. ..
Don:  In the given period time, period of 0.6 second.
Roy:  Is being added to the pool... ahh yes, is being added in the period of time...
no, in...
Don:  The period of time...

Roy and Don describe a dynamic process. The use of a progressive time “is being
added”, for example, indicates that.

Roy then writes the following answer:

The painting of the graph in the animation illustrates the amount of water that is being
added to the pool by the area that the graph forms with the time axis.

We interpret Roy's answer as expressing an evolution as he visually grasps the
accumulation as an ongoing process. Roy ties the painting of the increasing
rectangular area in the animation, which looks continuous, with the accumulation of
water, suggesting that Roy “sees” the accumulation as a continuous process. This
interpretation gets affirmed later when the students draw continuous functions, and
hence shows the construction of AF.

Ana and Zoe also discuss the animation:

Ana:  That’s right, but imagine you have a pool, you don’t have 30 liters of water
straight away.

Zoe:  Right, it’s gradually.

Ana:  Right, it’s gradually, like, that’s what I had in mind.

Zoe:  Idon’tgetit.

Ana:  Imagine we have like... such a container...

Zoe:  Andyoufill it.

Ana:  We want to fill it with 30... umm... 30 liters, we take a pipe, and we don’t fill
it straight away.

Zoe:  That’s right, it is done gradually.

Ana uses the context of the pool that is being filled with water and describes the
process of accumulation as a gradual one, which seems to help her grasp the
accumulation process as dynamic and continuous. As in Don's case, this
interpretation gets affirmed later when the students draw continuous functions, and
hence express the construction of AF.
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5.4.2. Multiplicativity — graphical representation of a bit (M_gr)

The bit that accumulates has a graphical representation namely that the amount
accumulated by that bit is represented by the rectangular area of the bit (knowledge
element M_gr).

After playing the animation, the students are asked where in the animation they can
see the rate, the time period, and the amount of water, to draw the amount of water
that was added during time interval [1.5,1.9] and to explain why their drawing
represents the amount of water added in that time interval.

Ana marks the horizontal segment length of 0.4 as the time period, the rate as vertical
segment of 30 and the area of the rectangle, as shown in Figure 5, and answers:

Because the time duration that passed times the filling rate equals the amount of water
that was added— which is the rectangle area.
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Figure 5. Ana's drawing the amount of water

As mentioned in 5.1, Ana hasn’t constructed M_nr (numeric representation of a bit)
up to this point. In her answer above Ana expresses the construction of both the
numeric representation of the bit (M_nr) by explaining that the amount of water is
the product of the time and rate, and the graphical representation of the bit (M_gr)
by connecting the rectangle area as representing also the amount of water.

Similarly, Roy who has already constructed M _nr earlier, marks the segments
(Figure 6) in a similar way to Ana's, and describes that the area of the rectangle
represents the amount of water, expressing the construction of the graphical
representation of a bit (M_gr):

Because the illustration gives a rectangular shape that has an area that represents the
relation between the rate of filling and the time of filling, whose product gives the
amount of water that was added.
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Figure 6. Roy's drawing the amount of water

5.5 Accumulation function of a RoC constant in segments is linear in segments
(AFCS)

In the second part of the activity, the students are required to draw the function
representing the amount of water in the pool when the rate of flow is constant in
segments (Figure 7), where again the horizontal axis is time (minute) and the vertical
axis is the rate of filling (liters per minute). All pairs split the time according to the
segments given in the rate of flow graph, and then used the numeric representation
of the bit to calculate the bit added in each segment and sum the consecutive bits to
get the total amount accumulated, as demonstrated by Tim in Figure 8.
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Figure 7. Rate flow of a pool

All three pairs sketched the accumulation function as a graph of straight-line
segments as in Figure 8. Hence the students have constructed knowledge element
AFCS (accumulation function of a RoC constant in segments) by recognizing and
building-with knowledge elements M_nr and S.



34 GILAT FALACH, ANATOLI KOUROPATOV, TOMMY DREYFUS

Figure 8. The accumulation function sketched by Tim

5.6. Tiny bit reduction (TB_r)

The amount that accumulates in a time-interval can be calculated by summing the
amounts added in its two sub-interval, when the second sub-interval is much smaller
than the first sub-interval (knowledge element TB_r). In the first part of the activity,
which deals with a constant rate of flow, the students are asked to calculate the
amount of water accumulated up to a certain point in time by using the amount
accumulated up to an earlier point in time: (1) calculate the accumulated amount up
to minute 1.43 using the amount accumulated up to 1.4; (2) calculate up to minute
1.432 using 1.43; (3) calculate up to 1.433 using 1.432.

Table 2 presents a part of the conversation between Roy and Don discussing task (1)
with RBC analysis.

Table 2. Discussion between Roy and Don with RBC analysis

Turn | Speaker Utterance RBC

121 | Don Minute 1.43... the amount of water | RM nr
accumulated is... ahh, I know, he multiplied,

1.4 times... three... subtracting this from this R&B P14
[using the calculator]

122 | Roy How does he know?

123 Roy Wait, one second... if in each... in... it is
strange to me.

124 | Don Ifin 1.4 he did 42 (liters), like, it was filled with | B M _nr

42 (liters)...

125 | Roy Ahh, he knows the rate of [filling-up] the pool,
yes.
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126 | Don So he is subtracting this from this... he got 0.9. | B P14

127 | Roy Yes yes yes. One second. I know the rate of | R&B S

) 0 : :
filling up the pool? Good. [reading the question] R&B M nr
he used the amount of water accumulated up -
until... to find the amount of water accumulated | C TB_r
up until... he did 1.4 time 30 plus 0.03 times 30.

Roy and Don first split the bit into two smaller bits. They recognize and build-with
preliminary knowledge element P14 (time period — the difference between the start
and end time of a time interval gives time period of the time interval) to get the time
length of each bit. They then use the numeric representation to calculate the amount
added in each split bit, hence recognize and build-with M_nr. They sum the amount
added in both split bits (recognize and build-with S), thus expressing the construction
of TB_r (Tiny Bit reduction). In their way of solving the pair did not use a previously
calculated amount (up to minute 1.4), as they were instructed, but rather calculated
it again. In the following questions, which followed 2 and 3 (as described above),
they did consider the amount that was already calculated as they were instructed. For
example, in (3), in order to calculate the amount of water added up to minute 1.433
by using the amount of water added by minute 1.432 (which they have already
calculated to be 42.96), as can be seen in Figure 9.
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Figure 9. Tiny bit reduction by Roy

Ana and Zoe, also express the construction of TB_r (Tiny Bit reduction); however,
they did not recognize nor build-with M_nr, but rather, they again (see section 5.1)
recognize and build-with preliminary element P6 (proportion) as can be seen in

Erreur ! Source du renvoi introuvable..
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Figure 10. Using quantities proportion in Tiny Bit reduction by Ana and Zoe

5.7. Area under the graph represents the amount of water added to the pool
in case of a RoC in segments (A_cs)

In the case of a constant RoC, the bit that accumulates has a graphical representation
namely that the amount accumulated by that bit is represented by the rectangular
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area of the bit (knowledge element M gr); the process of constructing this
knowledge element was described in section 5.4. This knowledge is naturally
generalized to a RoC that is constant in segments: the area in a time interval under
the RoC graph and above the time axis represents the amount of water accumulated
in this time interval.

In the case of'a RoC constant in segments, the students were given two graphs, which
are constant in segments, representing the rate of flow in pool A and in pool B in
separate coordinate systems. Both coordinate systems are empty but have identical
units. The students were asked how they could determine whether the amounts
accumulated in the two pools are equal or not. Ana counted 18 squares under the
graph representing the rate of filling of pool A and above the horizontal axis, and
16 squares under the graph representing the rate of filling of pool B, as shown in
Figure 11, and determines that the amount of water accumulated in pool A is greater
than in pool B. Ana then explains that the area under the graph represents the amount
of water that was accumulated, hence expressing the construction of A_cs — that the
area under the graph in case of a RoC which is constant in segments represents the
amount of water accumulated.
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Figure 11. Counting the squares under RoC graph to compare the accumulated amounts by
Ana

5.8. Area under the graph represents the amount of water added to the pool
in case of a linear decreasing RoC (A_dl)

In the third part of the activity, the students are given a graph representing a linear
and decreasing rate at which a pool is filled with water (Figure 12).
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Figure 12. Linear and decreasing rate of flow

The students Don and Zoe (from two different pairs) first exhibit a chunky way of
thinking by suggesting splitting the time to 1-minute bits, and multiply the rate (at
the left border of the interval) with the time in order to get the accumulated amount,
meaning they recognized M_nr and S. However, their partners Roy and Ana
(separately in each pair) said that this is not applicable since the rate of flow is not
constant. In order to draw the accumulation function, each pair then split the time
into 1 minute length bits, calculating the area of the respective trapezoid, hence
expressing the construction of A_dl and recognizing and building-with it. They also
sum up the consecutive bits to get the accumulated amount, hence recognizing and
building-with S. Ana’s way of doing this is shown in detail in Figure 13 where the
horizontal axis represent the time of filling (min) and the vertical axis represents the
amount of water (liter).
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Figure 13. Ana’s accumulation function
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5.9. In the case of a linear and decreasing RoC, the bits are decreasing (DB)
and the Accumulation function is concave downward (AFDL)

In the third part of the activity which deals with linear and decreasing RoC (Figure
12), the students are also asked what can be said about the amounts of water that are
being added to the pool. Don and Roy answered that the amounts are getting smaller
and when they are asked by the researcher to elaborate, Don says:

It can also be seen according to the area of each part. Of each moment...by the area
of the graph at any moment. In the first second the area is the largest, and in the 2™
second the area starts to get smaller.

When he was asked by the researcher to show the areas that he refers to, he referred
to the graph representing the rate of filling as a function of time and pointed out the
areas that were marked by his partner, Roy, as I, II, III, IV, VI as shown in Figure
14.
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Figure 14. Numbering the bits by Roy

In his answer, Don expressed the construction of DB (in case of a decreasing RoC,
the amounts added with the same time interval are getting smaller). The process of
constructing DB occurs by recognizing and building-with previously constructed
knowledge element A_dl (the area under the graph in case of a linear decreasing RoC
represents the amount added). He then recognizes and builds-with DB to explain why
the accumulation function is concave downward, hence constructing AFDL.

To answer why the accumulation function is concave downward, Nick said: "The
rate at which the pool is being filled decreases, resulting in a decrease in the amount
of water added to the pool". To answer the same question, Ana explained that the
graph is concave downward since the amounts that are being added are gradually
decreasing. In her answer Ana expresses the two components of Accumulative
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Thinking: she expresses knowledge about the bits, describes the accumulation
process as dynamic and applies both to draw the graph (Figure 13).

6. Discussion

The learning activity designed for this research aimed to develop Accumulative
Thinking (see section 2). The analysis of the students' work allows us to argue that
the goal was met (see section 5). In this section, we will discuss the various properties
of the learning activity and its approach to integration that we believe may help
smooth the transition from secondary to tertiary studies on the subject of integration,
based on the analysis of the students' work.

6.1. Adopting RoC as the didactical base and using the pool context

As mentioned, the didactical base for learning accumulation can be viewed as 'adding
up pieces' or as derived from RoC (Ely & Jones, 2023). In this research, we adopted
the latter approach. RoC is a crucial concept for integration and is formally taught at
the tertiary level. However, it is a challenging concept for secondary students. To
address this, the activity proposed here uses an extra-mathematical context (see
section 1.3) of a pool being filled with water. When calculating the amount of water
added with a constant RoC, Ana and Zoe did not multiply the time duration by the
rate. Instead, they used their perception of water accumulating at a constant rate and
its proportional property: the ratio of the amounts of water flowing in two different
time intervals equals the ratio of the lengths of the time intervals (see section 5.1,
Figure 2). The pair circumvented the difficult notion of RoC by relying on their
understanding of the context to find the amount of water added in various time
intervals.

We chose the pool context because we believe that in this context high school
students can naturally grasp the accumulation process. The analysis suggests this
hypothesis has been verified. For example, Zoe wrote, "...Consequently, the water
accumulates and rises without any instances of descent due to accumulation";
observing a pool being filled with water, Zoe sees the process of accumulation
through the rising water level. This contrasts with the context of distance over time,
where the accumulation of distance is not tangible, making it harder to visualize its
dynamic and continuous process. As for RoC as a didactical base, Elias et al. (2023)
also found evidence that the pool context helps students grasp RoC intuitively,
enabling meaningful action and reasoning.

Another reason for using an extra-mathematical context is the prior knowledge of
secondary students. Not using such a context would require a formal mathematical
context, presenting the RoC function as a derivative function. Introducing the term
'derivative' might lead secondary students to apply their existing knowledge about
the connection between a function and its derivative, diverting their focus from the
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accumulation process. Our design decision addresses the gap between secondary and
tertiary levels, serving both levels. It enables the use of the RoC concept in an
informal, context-dependent manner at the secondary level, supporting later formal
studies at the tertiary level.

6.2. The relation between a RoC function and its accumulation function.

The accumulation approach has been developed within the framework of
quantitative reasoning (Thompson, 2022), relating directly to the meaning of the
integral in contextualized situations, such as the pool used in this research. Most high
school students will encounter integrals mainly in contextualized situations during
their later studies. Only the few who major in pure mathematics will focus on the
integral as an abstract mathematical object.

The accumulation function is constructed from a given RoC function, approximating
its antiderivative, specifically the antiderivative whose value at the beginning of the
accumulation process is zero. In other words, the derivative of the accumulation
function approximates the given RoC function. Hence, the approach includes the
Fundamental Theorem of Calculus (though this research did not explicitly address
that issue). Therefore, our approach offers the advantage of a single notion of integral
as accumulation function and its value, rather than two notions, definite and
indefinite integrals, which are only vaguely connected for most of high school
students (see section 1.2).

6.3. Riemann sums and accumulation

At the university level, integrals are usually approached via Riemann sums. In many
countries, this approach is considered “beyond the students” at the secondary level,
exemplifying Klein’s (2007) first discontinuity between secondary and tertiary
levels. The accumulation approach to integration is closely connected to Riemann's
definition of the integral as the limit of a sum of products. If the variable of
integration is time, the products are of the form time duration x RoC in that interval,
giving the 'bits' that accumulate. Accumulative Thinking as introduced here includes
these accumulated bits and the dynamism of the accumulation process.

6.3.1. Sums of products

Throughout the learning activity, students dealt with summing products of time
intervals and positive RoC (see section 5). Given a positive RoC, the product resulted
in a positive value. In the case of a negative RoC, the product results in a negative
value. Therefore, the students’ success in constructing knowledge in the case of a
(positive and) decreasing RoC, suggests that knowledge about the numerical and
graphical representation of a bit might also help overcome difficulties when dealing
with a negative RoC (see section 1.2), aiding in understanding why a definite integral



ACCUMULATIVE THINKING 41

of a negative function results in a negative value and the relationship of this value
with the area bounded by the function and the x-axis. Promoting the understanding
of the sum of products may prevent students from acquiring only formal techniques,
as reported by researchers (e.g., Thompson & Harel, 2021).

Although accumulation is a basic notion in daily life, thinking about accumulation
is challenging for students since they struggle to conceptualize the bits being
accumulated (Thompson & Silverman, 2008). Moreover, understanding the
accumulation function is not trivial, as its values depend on those of another function,
the RoC function. To address these difficulties, the activity asked the students to
calculate the accumulated amounts for time intervals of varying size supporting them
in thinking flexibly about the added amounts, (see sections 5.1 and 5.6). They
summed the bits to get the total accumulated amount for various RoC functions
(constant, segmented constant, and linear and decreasing RoC) and built an
accumulation function by referring to the accumulated amounts as the function's
values. Introducing secondary students to accumulated amounts and the
accumulation function in an accessible way supports their later tertiary studies.
Additionally, describing the accumulation process as a sum of products can prepare
secondary students for the introduction of Riemann sums at the university level.

6.3.2. The dynamic nature of the accumulation process

To address the dynamic nature of the accumulation process, the design included tasks
requiring students to calculate the accumulated amount in reduced time intervals (see
section 5.6). To help students grasp the dynamic and continuous nature of the
accumulation process, the design used the context of a pool being filled with water
and offered an animation illustrating the accumulation on a given RoC graph. This
animation, serving as a visual demonstration at the secondary level, proved useful
and efficient, aligning with previous research findings (Monaghan et al., 2019). This
efficiency is supported by the analysis; for instance, when discussing what the
animation represents (section 5.4.1), Ana said, "... imagine you have a pool, you
don’t have 30 liters of water straight away." Observing a pool being filled with water,
Ana sees the accumulation process as dynamic and continuous. Similar animations
could play a more sophisticated role at the tertiary level as a "grounding metaphor,"
relating a target domain within mathematics to a familiar source domain outside it,
creating a conceptual relationship between the two (Lakoff & Nuifiez, 2000).

Grasping the accumulation process as dynamic at the secondary level may prepare
students for later studies, where summing an infinite number of bits with
infinitesimal width is introduced at the tertiary level. It may also support the complex
nature of covariational thinking, which is necessary for understanding accumulation
(Thompson & Silverman, 2008).
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6.4. Shifting from the accumulation function of a RoC constant in segments
to that of a linear and decreasing RoC.

At the tertiary level, shifting from a RoC that is constant in segments to a varying
RoC (such as a linear decreasing one) requires an understanding of limits and
instantaneous rate. For a RoC constant in segments, students multiplied the constant
rate by the time duration to get the accumulated amount. The chosen extra-
mathematical context of a pool filled with water supports this multiplication
intuitively when the RoC is constant. However, this method is not applicable in the
case of a linear RoC and requires an understanding of notions not yet available to
secondary students, such as instantaneous rate. This difficulty is expressed by Zoe
and by Don when they suggest calculating the accumulated amounts of bits for a
linear and decreasing RoC by multiplying time duration by the rate of the left border
of the time interval, as if the rate were constant. To address this gap, the learning
activity provided opportunities to construct knowledge about the area under the
graph as a representation of the amount added (see sections 5.7 and 5.8), thus
enabling the students to handle an accumulation function of a linear and decreasing
RoC. Constructing this knowledge proved helpful for the students. As the analysis
shows, the partners of Zoe and Don suggested a more precise procedure by using the
area under the graph as a representation of the amount added to perform the
calculations (see section 5.8). We argue that in this case the concept of “area beneath
the graph” became an epistemological mediator for students’ exploration. It seems
that this mediator has a very concrete meaning for students as the graphical
representation of the accumulated quantity.

7. Conclusions

The mathematics curriculum in many countries extensively employs mathematical
concepts to describe real-world scenarios; our findings illustrate a reversal of this
relationship. The students make use of the extra-mathematical context derived from
everyday life to grasp and explain mathematical concepts. We speculate that this
phenomenon may become more pronounced when students generalize these ideas to
new and unfamiliar situations. For instance, when explaining negative RoC, students
may employ a narrative that depicts water being drained from a pool.

Based on the findings presented in this paper, we argue that our research could be
useful as a didactic and methodological approach to teaching and learning integral
calculus throughout the educational continuum, from secondary to tertiary
education. Informal classroom observations in an 11t grade class that used the same
learning activity show that students used the pool context as an anchor, applying it
to pure mathematical contexts. However, it is important to note that we are currently
in the early stages of classroom investigations. Further empirical studies of
significant duration are necessary to validate these conjectures. These studies should
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explore whether the knowledge construction observed in this research generalizes to
more complex flow rates, whether and how other extra-mathematical contexts aid
students in developing Accumulative Thinking, and what are the effects of
introductory activities like the one presented here on the long-term understanding of
the integral concept.

Undoubtedly, this mission is ambitious. However, there is some optimism since an
accumulation approach to integration has gained increased prominence world-wide,
on the basis of an approach based on quantitative reasoning (Thompson &
Silverman, 2008). This approach has been shown to be particularly appropriate for
applying integration in STEM subjects (Jones, 2015b), and locally has been adopted
as a guideline for integration in a new advanced level high school curriculum
(Dreyfus, Kouropatov & Ron, 2021).
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