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GILAT FALACH, ANATOLI KOUROPATOV, TOMMY DREYFUS 

ACCUMULATIVE THINKING AS AN INTUITIVE BASE FOR THE 

CONCEPT OF INTEGRAL 

Abstract. Integral calculus presents persistent challenges for students in general and for those 

transitioning from secondary to tertiary education in particular. This study examines the 

development of "Accumulative Thinking" as a foundation for understanding integration. In 

a purposely designed learning activity, pairs of Grade 11 students explored accumulation 

concepts using the context of water flowing into a pool. Using the Abstraction in Context 

framework, we analysed students’ processes of constructing knowledge during this activity. 

Our findings indicate that most students constructed elements of Accumulative Thinking, 

preparing them for future studies; the findings also demonstrate how real-world contexts can 

facilitate the development of Accumulative Thinking. 

Keywords. Calculus, integration, accumulation, accumulative thinking, construction of 

knowledge, secondary-tertiary transition. 

Résumé. Le calcul intégral présente des défis persistants pour les étudiants en général et pour 

ceux qui passent de l’enseignement secondaire à l’enseignement tertiaire en particulier. Cette 

étude examine le développement de « pensée accumulative » comme fondement à la 

compréhension de l’intégration. Au cours d’une activité d’apprentissage spécialement 

conçue, des paires d’élèves de la 11ème année scolaire ont exploré des concepts 

d’accumulation en utilisant le contexte d’eau coulant dans une piscine. En utilisant le cadre 

d’« abstraction en contexte », nous avons analysé les processus de construction de 

connaissances des élèves au cours de cette activité. Nos résultats indiquent que la plupart des 

élèves ont construit des éléments de pensée accumulative, les préparant ainsi à des études 

futures ; les résultats montrent également comment un contexte réel peut faciliter le 

développement de la pensée accumulative. 

Mots-clés. Calcul différentiel et intégral, accumulation, pensée accumulative, construction 

de connaissances, transition secondaire-tertiaire. 

___________________________________________________________________ 

Introduction 

Learning and teaching calculus in general, and integral calculus in particular, is a 

challenging issue at secondary and tertiary levels. This paper deals with a preparatory 

learning activity offering students an opportunity to develop ways of thinking that 

will be useful when studying integration with an accumulation approach. We call 

such thinking Accumulative Thinking. There are at least two ways to consider the 

didactical base for learning accumulation, as 'adding up pieces' and as derived from 

Rate of Change (Ely & Jones, 2023). In the feasibility study presented here we 
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mainly adopted the second way. The design of the learning activity and the 

investigation of its implementation were informed by the theoretical framework of 

Abstraction in Context (Dreyfus et al., 2015). The research reported in this paper 

was conducted in continuous discussion and cooperation between an experienced 

high school teacher of mathematics (the first author), an experienced tertiary teacher 

of mathematics (the second author), and researchers (the second and third authors). 

The findings of the research can serve as a didactic and methodological approach to 

teaching and learning integral calculus throughout the educational continuum to 

define a teaching perspective at the secondary level, to facilitate the transition to the 

tertiary level, and to serve as a meaningful base at the tertiary level. 

1. Background 

1.1. The integral as an accumulating quantity 

The concept of integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 can be approached via the notion of anti-

derivative and/or via the notion of accumulation. The anti-derivative approach uses 

the difference between the anti-derivative values at the upper boundary 𝑏 and the 

lower boundary 𝑎 of the integral. The Function 𝐹(𝑥) is an anti-derivative of the 

function 𝑓(𝑥) if 𝐹′(𝑥) = 𝑓(𝑥) for all 𝑥 in the domain of 𝑓(𝑥). If 𝑓(𝑥) is a continuous 

function in [𝑎, 𝑏], there exist antiderivatives of f and if 𝐹(𝑥) is one of the anti-

derivatives of 𝑓(𝑥), then  ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
.    

The accumulation approach is based on quantitative reasoning (Thompson, 2022); 

it considers the function 𝑓(𝑥) to be the rate of change (RoC) of a quantity 𝑄 with 

respect to the variable of integration 𝑥, and as a consequence, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 represents 

the amount of 𝑄 accumulated as 𝑥 varies from 𝑎 to 𝑏. This connection is established 

by the approximation of the integral as a sum of products according to Riemann, as 

in  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≅ ∑ 𝑓(𝑎 + (𝑘 − 1)∆𝑥) ∙ ∆𝑥, ∆𝑥 =
𝑏 − 𝑎

𝑛
.

𝑛

𝑘=1

 

Indeed, for given 𝑛, since 𝑓(𝑎 + (𝑘 − 1)∆𝑥) is the rate of change of 𝑄 at the 

beginning of the 𝑘th interval of length ∆𝑥, the product 𝑓(𝑎 + (𝑘 − 1)∆𝑥) ∙ ∆𝑥 is (an 

approximation of) the bit of quantity accumulated in the 𝑘th interval, and the sum of 

these bits over all intervals is the total quantity accumulated from 𝑎 to 𝑏. 

An accumulation function approximating the total quantity accumulated from 𝑎 to 𝑥 

for any  𝑎 ≤ 𝑥 ≤ 𝑏, is then defined naturally by  
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𝐴(𝑥) = ∑ 𝑓(𝑎 + (𝑘 − 1)∆𝑥) ∙ ∆𝑥 + 𝑓(𝑎 + 𝑚

𝑚

𝑘=1

∆𝑥)(𝑥 − (𝑎 + 𝑚∆𝑥)) 

where 𝑚 is chosen so that  𝑚∆𝑥 ≤ 𝑥 < (𝑚 + 1)∆𝑥 (Thompson & Ashbrook, 2019). 

The function 𝐴(𝑥) interpolates linearly between the values of the above Riemann 

sum at the endpoints of the intervals 𝑥 = 𝑎 + 𝑘∆𝑥. 

1.2. Research on integration as accumulation 

In the special case where 𝑥 is time, the products are of the form ‘length of time 

interval’ × ‘RoC with respect to time in that interval’ (for example speed), and it is 

particularly easy to grasp the quantitative nature of the bits that accumulate (for 

example, bits of displacement). According to Thompson and Silverman (2008), in 

order for students to see that the area under the graph of 𝑓 represents a quantity, it is 

important to understand that the accumulated quantity consists of incremental bits 

which are created multiplicatively by two quantities the form 𝑓(𝑥) ∙ ∆𝑥. 

Researchers have reported difficulties of students at the secondary as well as at the 

tertiary level with the integral concept (e.g., Bressoud, 2009; Ely & Jones, 2023; 

Jones, 2015a; Orton, 1983; Rösken & Rolka, 2007). Such difficulties arise, for 

example, when dealing with the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 when 𝑓(𝑥) is negative or when 

𝑏 is less than 𝑎 (Orton, 1983). When finding the area between a given graph and the 

horizontal axis, where the graph is partially above and partially below the axis, it 

was found that the students who solved correctly could not explain why. Kouropatov 

and Dreyfus (2013) report that only 9% of 12th grade high school students in their 

study agreed with the claim that if a continuous function 𝑓(𝑥) is negative, then its 

definite integral is negative; 58% answered that the integral will be positive and 

explained that an integral is an area, and an area has a positive value. Even high-

ability students rarely acquire comprehension regarding the central concepts of 

calculus; instead, in the best case, formal techniques allow them to answer exercises 

(e.g., Thompson & Harel, 2021). 

According to Thompson and Silverman (2008), in order to hold a well-structured 

understanding of accumulation function, students need to coordinate three variables 

simultaneously: the changing value of 𝑥, the value of the integrand 𝑓 that changes 

accordingly, and the value of the quantity accumulated up to 𝑥, which derives from 

these changes of 𝑥 and 𝑓, and which changes according to both. Hence, one of the 

difficulties in understanding accumulation function arises from understanding 

accumulation as a function which depends on another function. Students typically 

encounter such complex covariation for the first time when learning about 

accumulation. 
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Constructing the integral concept based on the idea of accumulation has been shown 

to be beneficial (Carlson, Smith & Persson, 2003; Kouropatov, 2016). Kouropatov 

(2016) built and researched a teaching unit for the integral concept based on 

approximation and accumulation; he concluded that this approach has clarified the 

connection between integration and differentiation for the students and has allowed 

them to realize the mathematical meaning of the integral. Carlson et al. (2003) 

developed notions of accumulating quantities, accumulation functions and the 

Fundamental Theorem of Calculus (FTC). Their students examined in detail the 

incremental accumulation of various quantities, tying the idea of accumulation to the 

notation. This approach resulted in a high success rate in terms of students’ 

conceptions of accumulation functions and their understanding of the FTC. 

The understanding of integration as an accumulation process lies at the heart of the 

comprehension of the underlying mathematical ideas as well as many applications 

(Ely & Jones, 2023). The accumulation function has the potential to serve as a model 

for different situations that describe continuous processes of everyday life. 

Conversely, many such processes have the potential to illustrate accumulation. 

In summary, research has established that the approach to integration based on the 

idea of accumulation is efficient; in this paper, we propose to prepare such an 

approach at the secondary level, thus contributing to a smooth transition to the 

tertiary level. We will argue and present evidence that this can be done by 

incorporating intuitive and tangible real-world examples and emphasizing the strong 

connection between accumulation and RoC.  

1.3. Extra-mathematical context 

According to Gravemeijer and Doorman (1999), context problems are defined as 

problems whose problem situation is experientially real to the student. In their 

research they discuss the role of context problems in calculus courses as they are 

used in the Dutch approach (known as Realistic Mathematics Education).  

In their article, the extra-mathematical context of velocity and distance from a given 

starting point is used to approximate the accumulated amount (distance from the 

starting point) from a given function representing the rate of change (speed as a 

function of time). The approximation is made using a step function by assuming a 

constant velocity for each interval, which equals the value of the velocity function at 

the left (initial) endpoint of the interval. This extra-mathematical context offers 

students a way to act and reason meaningfully, and hence to develop informal, 

context-dependent strategies; these informal strategies may help them later to 

develop generalization and formalization of accumulation (Gravemeijer & 

Doorman, 1999). 
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The effect of extra-mathematical context on problem-solving has been widely 

studied in various subjects, for example computer programming (Leinonen et al., 

2021), algebra (Bottge, 1999) and proportional thinking (Lawton, 1993). Research 

in mathematics and science education reveals that it is difficult for students to apply 

their mathematical knowledge in different contexts (Delice & Roper, 2006) as the 

context requires an additional layer of the meaning to variables in the mathematical 

expression in order to be applied in the science context (Dray & Manogue, 2005), 

and particularly in integration problems (Alves et al., 2019; Jones, 2015a). 

Carlson et al. (2003) developed curricular materials aiming to promote students’ 

understanding and reasoning abilities about the FTC, which contained tasks given in 

an extra-mathematical context whenever possible. Twenty-four students were 

assessed for their pre-calculus concepts at the beginning of the term and after 

instruction. The extra-mathematical contexts used for the assessment were water 

filling up a tank and distance traveled over time. The RoC function was provided 

graphically in the tank context, and algebraically in the distance context. A third item 

used a geometry context – a circle expanding in size. The questions asked in each 

item were related to the FTC and the accumulation function. The results showed that 

most students have completed the course with a strong understanding of notational 

aspects of accumulation, as defined by the researchers. Such understanding includes 

that the notation 𝐹(𝑥)  = ∫ 𝑓(𝑥)𝑑𝑥 means that 𝐹 (which represents an accumulation 

function) is an antiderivative of 𝑓, and that 𝑓 is the RoC of 𝐹. 

1.4. Abstraction in Context 

Abstraction in Context (AiC) is a theoretical framework proposed by Hershkowitz 

et al. (2001) for studying learners’ construction of new (to them) abstract 

mathematical knowledge. The knowledge intended by the designer or teacher to be 

constructed is analyzed a priori into knowledge elements that include concepts, 

procedures, and strategies. In this paper, the relevant part of the a-priori analysis will 

be presented in section 4 as part of the results since the design of a learning activity 

and the analysis of the structure of the content forms an integral part of the research. 

Learners’ processes of constructing these knowledge elements are then analyzed by 

means of three observable epistemic actions: Recognizing (R) – the learner identifies 

a previous construct as relevant to the task at hand; Building-With (B) – the learner 

uses a recognized construct for achieving a local goal, and Constructing (C) – a new 

construct emerges for the learner by recognizing and building-with previous 

constructs. As R-actions are nested in B-actions and R- and B-actions are nested in 

C-actions, Hershkowitz et al. (2001) proposed the name “dynamically nested RBC-

model”. The model and its use are described in more detail by Dreyfus et al. (2015).  

  



GILAT FALACH, ANATOLI KOUROPATOV, TOMMY DREYFUS 22 

2. Rationale and research questions 

The research presented in this paper approaches integration via accumulation; it aims 

to give secondary students, who have not yet learned integration, an opportunity to 

develop ways of thinking that will be useful in taking an accumulation approach to 

integration at school as well as in later tertiary level studies. Such thinking will be 

called in this research Accumulative Thinking. 

We define Accumulative Thinking as a combination of specific knowledge and its 

application:  

1. Awareness of the nature and the multiplicative structure of the "bits" that are 

accumulated, as well as the dynamism of the process of accumulating these 

bits.  

2. The ability to apply this knowledge, for example, to be able to use it for 

reasoning about some characteristic of an accumulation function, such as its 

concavity, when the RoC function is given graphically.  

This paper focuses on the following questions: 

1. What is the structure of Accumulative Thinking? 

2. How do students construct the elements of Accumulative Thinking?  

Research question 1 will be answered by an a-priori analysis of knowledge elements 

that constitute Accumulative Thinking. This will result in a set of 16 knowledge 

elements, out of which 10 knowledge elements that are relevant to this report are 

presented in section 4. To answer research question 2, we will describe how students 

construct these 10 knowledge elements (section 5).  

The investigation of how students construct knowledge about accumulation (as being 

dependent on a process that is being carried out on another function) is expected to 

help improve the pilot design introducing accumulation presented below (section 

3.2). 

The teaching approach we design for the secondary level is expected to contribute to 

the transition to the tertiary level, and to serve as intuitively acceptable and 

meaningful base at the tertiary level. We expand on this in section 6. This is in line 

with recent claims that the secondary-tertiary transition is neither continuous nor 

discontinuous but both (Gueudet et al., 2016). 

Carlson et al. (2003) used the accumulation approach to develop tertiary students’ 

understanding of the FTC (see sections 1.2 and 1.3); they presented problems using 

various extra-mathematical contexts. Our research presents the accumulation 

approach in the context of filling a pool; however, our mathematical focus is 

different – it is to develop Accumulative Thinking in secondary students, so it can 
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serve later as building blocks required for introducing the integral concept, including 

the FTC.  

3. Methodology 

3.1. Research design and population 

A learning activity was designed and piloted with a pair of grade 11 students who 

study mathematics at an advanced level. The pilot gave insight into changes required, 

and the learning activity was re-designed into a final version for this research.  

In this research 6 students from two different schools participated; they all learn 

mathematics in grade 11 at the advanced level. When they participated in the 

research, the students had already learned the topic of differentiation but not yet that 

of integration.  

The students carried out the learning activity in pairs and were asked to collaborate 

and discuss the tasks they were working on. However, each student had their own 

learning activity sheet, which had space for answers, and the students were instructed 

that in case there is a disagreement, each student will write their own answer. The 

researcher (the first author) presented questions to the students only to clarify their 

utterances and the mathematical meanings behind the course of action they took. 

The interviews were audio-recorded and transcribed, and the transcriptions were 

analyzed, together with the learning activity sheet of each student, using the RBC 

model. The goal of this analysis was to gain insight into the learning processes of the 

students. 

3.2. The learning activity 

The learning activity was designed following Tabach et al. (2008). To allow a 

smooth transition from secondary to tertiary studies of the integral concept, the 

activity we designed introduces accumulation to high-school students in an 

elementary manner. The activity uses the context of water flowing into a pool and 

deals with accumulation by leading the students to consider the bits that accumulate, 

their structure as products of time duration × water flow rate, the effect the RoC 

function – the rate of flow of water – has on the bits, and the accumulation function 

as sum of the bits accumulated up to a given time. Thus, the tasks in the activity were 

designed with the intention of leading the learners to build the function representing 

the amount of water in the pool as a function of time.  

The activity has three parts: the first part deals with the case of a constant RoC, the 

second with the case of a RoC constant in segments, and the third with the case of a 

linear and decreasing RoC. All RoC functions in this activity are positive since the 

activity aims to serve as an introduction to accumulation. 
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In the first part of the activity the students are given the constant rate at which a pool 

is being filled with water. They are given consecutive time intervals and are asked 

to fill in for each interval the time period, the rate of flow and the amount of water 

added. This task was designed to offer an opportunity for the students to conclude 

and use the multiplicative relationship of time duration × water flow rate = amount 

added. The students are then asked about equal bits, meaning time intervals in which 

the same amount was added. The students are asked to find the accumulated amount 

for various points in time, based on the amounts they calculated previously. Next, 

the students are asked to sketch the graph of the accumulation function of the given 

constant RoC. In the next question the students are given a GeoGebra animation 

where they may select start and end times. When executing the animation, the 

rectangular area under the graph and above the time axis is being filled in from the 

starting point and grows continuously to the end point of the selected time interval. 

The students are asked questions about the graphical representation of each of the 

elements in the above multiplicative relationship; they are offered repeated 

opportunities to conclude that the area of the rectangle above a time interval 

represents the amount of water added in that time interval, and to connect the 

graphical representation with the numerical representation of the multiplicative 

relation time duration × water flow rate = amount added. The animation aims to 

help the students grasp visually the process of accumulation as a dynamic one. 

Screen shots of this animation are provided in Figure 4 (section 5.4). 

In the second part, which deals with the case of a RoC which is constant in segments, 

the students are given two graphs, both constant in segments, representing the water 

flow rate. The students are asked to draw the accumulation function for each water 

flow rate and find the amount of water that was added in a given time interval, during 

which the rate of filling up the pool changes. The amount added can be calculated 

since the axes show units and values. In the following question, the students are 

given two graphs, both constant in segments, on two identical coordinate systems 

without units nor values on the axes. They are asked to determine if the amounts of 

water accumulated in the pools are equal or not. This last part was designed to give 

the students another opportunity to express that the area under the graph represents 

the amount of water when the amounts accumulated cannot be calculated since the 

coordinate axes are not labeled with units and values. This second part also deals 

with tiny bits, where they are asked to calculate a bit by splitting it to two sub 

intervals, where the second one is much smaller. 

In the third part, the students are presented with the graph of a linear and decreasing 

RoC, representing the water flow rate. They are asked about the amounts that are 

added over time and requested to draw a sketch of the accumulation function giving 

them an opportunity to conclude that the accumulation function is concave 

downward. 
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3.3. Data analysis 

The data analysis consists of two stages: An a priori analysis and an analysis of the 

interview data. The a priori analysis examines the learning activity in view of the 

students’ previous knowledge. Its aim is to identify the knowledge elements the 

designer of the learning activity intended the students to construct while carrying out 

the activity. These knowledge elements are defined operatively. The a priori analysis 

is presented in section 4. 

The data from the interviews were analyzed according to the methodology of AiC. 

First the interviews were transcribed and presented in a table which contains the turn 

number, the speaker, the utterance and a fourth column for the epistemic actions. 

The RBC model was used to identify epistemic actions of recognizing (R) a 

knowledge element, building-with (B) a knowledge element and constructing (C) a 

new knowledge element. These epistemic actions were marked along the 

transcription. The RBC analysis is presented in section 5; a transcript with epistemic 

actions is included in section 5.6.  

4. The structure of Accumulative Thinking 

The a priori analysis of Accumulative Thinking as defined in section 2 resulted in a 

list of sixteen knowledge elements intended to be constructed by the students; 

together, these knowledge elements constitute Accumulative Thinking. Each of them 

has been given an operative definition, allowing the researcher to assess whether a 

student has constructed the knowledge element (see Table 1). In addition, we 

identified fifteen preliminary knowledge elements, assumed to have been 

constructed earlier. For the economy of space, we only present an overview of the 

preliminary elements; among the 16 main knowledge elements, we only present the 

10, which are relevant to this paper, followed by a table with their operative 

definitions. These knowledge elements will be illustrated in section 5, in parallel 

with the analysis of the students’ work. This illustration includes two of the 

preliminary knowledge elements.  

Following the learning activity, the first few knowledge elements relate to the case 

where the RoC is constant. The accumulating bits have a multiplicative nature since 

the amount added in a time interval is the product of the length of the time interval 

by the rate at which the quantity accumulates (knowledge element M_nr: 

Multiplicativity – numeric representation). The bit has a graphical representation as 

the corresponding rectangular area (knowledge element M_gr: Multiplicativity – 

graphical representation). The ratio of the amounts of water entering the pool in two 

different time intervals equals the ratio of the lengths of the time intervals 

(preliminary knowledge element P6 - proportion).  
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In the case of a RoC that is constant in segments, the accumulation function is linear 

in segments (AFCS), and the area under the RoC graph represents the amount of 

water added (A_cs). In all cases, the accumulation process is dynamic, meaning that 

the accumulation function gives the amount accumulated at any given time (AF). 

Summing up consecutive bits within a given time interval results in the amount 

accumulated in that entire time interval (S: Summing consecutive bits). Conversely, 

the amount that accumulates in a time-interval can be split into two sub intervals, 

where the second one is much smaller than the first sub-interval, for example, 10 

times smaller (TB_r: Tiny Bit reduction). In the case of a linear and decreasing RoC, 

the multiplicative connection time duration × water flow rate = amount added 

cannot be used as is because the rate does not have a constant value. The idea of 

instantaneous RoC is not appropriate for students at this stage of learning. Therefore, 

it becomes imperative to use the area under the graph as representing the amount 

added (A_dl: Area – decreasing and linear RoC). The bits that accumulate are 

graphically represented by the trapezoids, formed by the graph and the time axis 

within a given time interval. As time increases, the amounts added (the bits) with the 

same time duration are getting smaller (DB: Decreasing Bits). Hence, as the RoC 

decreases, the accumulation function in this case is concave downward (AFDL: 

Accumulation Function of a Decreasing Linear RoC). 

 

Table 1. Knowledge Elements related to this article and their operative definitions 

Knowledge Element Abbreviation Operative Definition 

Multiplicativity - 

numeric 

representation 

M_nr In the case of constant RoC, the student 

expresses the multiplicative connection 

between the quantities:                                                 

time duration × RoC = amount added.  

Multiplicativity - 

graphical 

representation 

M_gr In the case of constant RoC, the student 

expresses that the amount of water 

added equals the area under the graph in 

a given time interval. 

Accumulation 

function of a RoC 

constant in segments  

AFCS The student draws the graph of the 

accumulation function as continuous 

and linear in segments and describes the 

amount added in a time segment using 

M_nr or M_gr. 

Area under the graph 

in case of a RoC 

constant in segments 

A_cs The student expresses that the total area 

under all segments up to the current 
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Knowledge Element Abbreviation Operative Definition 

time represents the amount 

accumulated. 

Accumulation 

Function as a 

dynamic process 

AF The student expresses that as time flows 

water is being accumulated, and that at 

any given time the accumulation 

function gives the amount that has been 

accumulated from the starting point in 

time to the given time. 

Summing 

consecutive bits 

S The student expresses verbally, 

graphically or otherwise, that the 

quantity of water added in a time 

interval equals the sum of the quantities 

added in its consecutive time sub-

intervals. 

Tiny Bit reduction TB_r The student splits a given time interval 

into 2 consecutive sub-intervals, the 

second of which is much smaller than 

the given time interval, and then the 

student sums the two quantities added in 

the sub-intervals to calculate the amount 

added in the given interval.  

Area – decreasing  

and linear RoC 

A_dl In the case of a linear decreasing RoC, 

the student expresses that the area of the 

trapezoidal geometric shape bounded by 

the graph in a time interval represents 

the amount added in that time interval. 

Decreasing Bits DB The student constructed A_dl and 

expresses that since RoC is decreasing 

the amounts added in time intervals 

with the same ∆𝑡 are getting smaller 

because the geometrical shapes 

(representing the bits) are getting 

smaller. 

Accumulation 

Function of a 

Decreasing Linear 

RoC 

AFDL The student constructed A_dl and uses 

DB to justify the downward concavity 

of the accumulation function. 
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5. Students construct the elements of Accumulative Thinking 

In this section, we present empirical evidence of construction processes of the 

students Ana & Zoe, Roy & Don, and Tim & Nic, that contribute to Accumulative 

Thinking. We use italics to mark the epistemic actions recognizing, building-with 

and constructing. Detailed RBC analyses of all transcripts of the three pairs of 

students have been carried out as explained in section 3.3. Here we present 

summaries of at least one construction process for each knowledge element; for one 

of them we demonstrate in detail how the analysis has been carried out by showing 

a partial transcript and marking the epistemic actions for relevant utterances in 

section 005.6. Tiny bit reduction (TB_r)(Table 2).  

5.1. Multiplicativity – numeric representation of a bit (M_nr)  

The activity starts with a pool being filled with water at a constant rate of 30 liters 

per minute, which is described verbally. The students are given a table with 

consecutive time intervals and are asked to fill in the length of the interval, the rate 

at which the pool is being filled and the amount of water that is added in each time 

interval.  

Roy and Don express the numeric representation of a bit by multiplying the time 

duration (second row,  Figure 1) and rate of filling (third row) in each time interval 

to get the amount of water that was added (fourth row). They also verbally describe 

the multiplicative connection in their written answer. Hence they constructed M_nr.  

 

 Figure 1. Don's table. Rows' titles: 1st row – Time interval, 2nd row – Time duration (min), 

3rd row – Rate of filling (liters per min), 4th row – Amount of water added (liters) 

Ana and Zoe, however, don't express the numeric representation of a bit, but rather 

recognize and build-with preliminary knowledge element P6 (the ratio of the 

amounts of water flowing in two different time intervals equals the ratio of the 

lengths of the time intervals) in order to find the amount added in each bit. For 

example, to find the amount added by time interval [1.4,2.0], they first convert the 

time duration from minutes (0.6) to seconds (36), then they calculate the amount 

added in 36 seconds, as shown in Figure 2, by recognizing and building-with P6. 



ACCUMULATIVE THINKING 29 

 

Figure 2. Using proportion to find bits by Ana and Zoe 

In summary, while working on the described task, Roy and Don constructed the 

knowledge element M_nr, while Ana and Zoe did not. 

5.2. Summing up consecutive bits (S) 

Summing up consecutive bits within a given time interval results in the amount 

accumulated in that entire time interval (knowledge element S). In the first part of 

the activity, dealing with a constant rate of flow, the students are asked to find the 

amount accumulated up to various points in time (which correlated to the 

consecutive bits shown in  Figure 1). To do so, all three pairs sum up the amounts 

of the consecutive bits up to the required one, and fill in the table, expressing 

construction of knowledge element S. Figure 3 shows Tim's calculations, filling in 

the second row the total amount of water that accumulated in the pool up to the given 

minute in the first row. 

 
Figure 3. Finding the accumulated amount by Tim.  

Rows' titles: 1st row – Up to minute, 2nd row – Total amount of water that accumulated in 

the pool (liters) 

5.3 Initial thinking about accumulation (starting point of constructing the 

accumulation function as a dynamic process – AF) 

At the end of the first part of the activity, dealing with a constant rate of flow, the 

students are given, for the first time, a definition of an accumulation function: y=A(t) 

is a function that represents the amount of water that accumulated in the pool from 

minute 0 to minute t. It is called an accumulation function. They are then asked to 

draw the accumulation function for which they calculated the accumulated amounts 

(see 5.1 and 5.2) and are asked why it is called an accumulation function. All pairs 

drew a correct increasing straight-line graph; as to why it is called an accumulation 

function, Zoe wrote:  

The value of y, which represents the amount of water, increases based on the preceding 

y value. Consequently, the water accumulates and rises without any instances of 

descent due to accumulation. 

  



GILAT FALACH, ANATOLI KOUROPATOV, TOMMY DREYFUS 30 

Roy (from a different pair) wrote: 

Because the amount of water being added in each minute is constant, in every point 

on the function, the y value accumulates and increases at 30 liters per minute. 

While Zoe uses the pool context to explain the increasing property of the 

accumulation function graph she drew, Roy uses the slope of the accumulation 

function graph to explain why it increases. It is interesting, though, that both students 

choose to explain why the accumulation function graph is increasing when 

answering why the accumulation function is called that way. The students' answers 

mark the starting point of constructing AF since both are describing (although in 

different ways) the process of the accumulation of water in the pool.  

5.4 Multiplicativity – graphical representation of a bit (M_gr) and 

Accumulation Function as a dynamic process (AF) 

Here we describe how students construct knowledge elements M_gr and AF when 

working on the task with the GeoGebra animation (section 3.2). The process of 

constructing of AF started prior to this task (section 5.3). 

In the first part of the activity, which deals with a constant RoC, the students are 

requested to select a time interval (start and end) and play the animation, where the 

horizontal axis is time and the vertical axis is the flow rate. During the animation, 

the area under the graph and above the time axis is being painted, from the starting 

point and growing continuously to the end point of the time interval. As time flows, 

the painted area increases. In Erreur ! Source du renvoi introuvable. there are 3 

screen shots from the animation on the time interval [1.5,1.9]. The area is colored in 

steps of 0.1 on the time axis, which makes the coloring process look continuous.  

Figure 4. Screen shots from the GeoGebra animation 

5.4.1. Accumulation function as a dynamic process (AF) 

After playing the animation as described above, the students are asked what the 

animation illustrates.  
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Roy and Don discuss the animation: 

Roy:  I understand, so the graph represents the rate… the amount of water… 

Don:  Which was added… 

Roy:  That is being added… 

Don:  In the given period of time. 

Roy:  In the given period of time, not in relation to the given period time, because… 

Don:  In the given period time, period of 0.6 second. 

Roy:  Is being added to the pool… ahh yes, is being added in the period of time… 

no, in… 

Don:  The period of time… 

Roy and Don describe a dynamic process. The use of a progressive time “is being 

added”, for example, indicates that.  

Roy then writes the following answer: 

The painting of the graph in the animation illustrates the amount of water that is being 

added to the pool by the area that the graph forms with the time axis. 

We interpret Roy's answer as expressing an evolution as he visually grasps the 

accumulation as an ongoing process. Roy ties the painting of the increasing 

rectangular area in the animation, which looks continuous, with the accumulation of 

water, suggesting that Roy “sees” the accumulation as a continuous process. This 

interpretation gets affirmed later when the students draw continuous functions, and 

hence shows the construction of AF.  

Ana and Zoe also discuss the animation: 

Ana: That’s right, but imagine you have a pool, you don’t have 30 liters of water 

straight away. 

Zoe: Right, it’s gradually. 

Ana: Right, it’s gradually, like, that’s what I had in mind. 

Zoe: I don’t get it. 

Ana: Imagine we have like… such a container… 

Zoe: And you fill it. 

Ana: We want to fill it with 30… umm… 30 liters, we take a pipe, and we don’t fill 

it straight away. 

Zoe: That’s right, it is done gradually. 

Ana uses the context of the pool that is being filled with water and describes the 

process of accumulation as a gradual one, which seems to help her grasp the 

accumulation process as dynamic and continuous. As in Don's case, this 

interpretation gets affirmed later when the students draw continuous functions, and 

hence express the construction of AF.   
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5.4.2. Multiplicativity – graphical representation of a bit (M_gr) 

The bit that accumulates has a graphical representation namely that the amount 

accumulated by that bit is represented by the rectangular area of the bit (knowledge 

element M_gr). 

After playing the animation, the students are asked where in the animation they can 

see the rate, the time period, and the amount of water, to draw the amount of water 

that was added during time interval [1.5,1.9] and to explain why their drawing 

represents the amount of water added in that time interval. 

Ana marks the horizontal segment length of 0.4 as the time period, the rate as vertical 

segment of 30 and the area of the rectangle, as shown in Figure 5, and answers: 

Because the time duration that passed times the filling rate equals the amount of water 

that was added– which is the rectangle area. 

 

Figure 5. Ana's drawing the amount of water 

As mentioned in 5.1, Ana hasn’t constructed M_nr (numeric representation of a bit) 

up to this point. In her answer above Ana expresses the construction of both the 

numeric representation of the bit (M_nr) by explaining that the amount of water is 

the product of the time and rate, and the graphical representation of the bit (M_gr) 

by connecting the rectangle area as representing also the amount of water. 

Similarly, Roy who has already constructed M_nr earlier, marks the segments 

(Figure 6) in a similar way to Ana's, and describes that the area of the rectangle 

represents the amount of water, expressing the construction of the graphical 

representation of a bit (M_gr): 

Because the illustration gives a rectangular shape that has an area that represents the 

relation between the rate of filling and the time of filling, whose product gives the 

amount of water that was added. 
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Figure 6. Roy's drawing the amount of water 

5.5 Accumulation function of a RoC constant in segments is linear in segments 

(AFCS) 

In the second part of the activity, the students are required to draw the function 

representing the amount of water in the pool when the rate of flow is constant in 

segments (Figure 7), where again the horizontal axis is time (minute) and the vertical 

axis is the rate of filling (liters per minute). All pairs split the time according to the 

segments given in the rate of flow graph, and then used the numeric representation 

of the bit to calculate the bit added in each segment and sum the consecutive bits to 

get the total amount accumulated, as demonstrated by Tim in Figure 8.  

 

Figure 7. Rate flow of a pool 

All three pairs sketched the accumulation function as a graph of straight-line 

segments as in Figure 8. Hence the students have constructed knowledge element 

AFCS (accumulation function of a RoC constant in segments) by recognizing and 

building-with knowledge elements M_nr and S.  
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Figure 8. The accumulation function sketched by Tim 

5.6. Tiny bit reduction (TB_r) 

The amount that accumulates in a time-interval can be calculated by summing the 

amounts added in its two sub-interval, when the second sub-interval is much smaller 

than the first sub-interval (knowledge element TB_r). In the first part of the activity, 

which deals with a constant rate of flow, the students are asked to calculate the 

amount of water accumulated up to a certain point in time by using the amount 

accumulated up to an earlier point in time: (1) calculate the accumulated amount up 

to minute 1.43 using the amount accumulated up to 1.4; (2) calculate up to minute 

1.432 using 1.43; (3) calculate up to 1.433 using 1.432. 

Table 2 presents a part of the conversation between Roy and Don discussing task (1) 

with RBC analysis. 

Table 2. Discussion between Roy and Don with RBC analysis  

Turn Speaker Utterance RBC  

121 Don Minute 1.43… the amount of water 

accumulated is… ahh, I know, he multiplied, 

1.4 times… three... subtracting this from this 

[using the calculator] 

R M_nr 

R&B P14 

122 Roy How does he know?  

123 Roy Wait, one second… if in each… in… it is 

strange to me. 

 

124 Don If in 1.4 he did 42 (liters), like, it was filled with 

42 (liters)… 

B M_nr 

 

125 Roy Ahh, he knows the rate of [filling-up] the pool, 

yes. 
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126 Don So he is subtracting this from this… he got 0.9. B P14 

 

127 Roy Yes yes yes. One second. I know the rate of 

filling up the pool? Good. [reading the question] 

he used the amount of water accumulated up 

until… to find the amount of water accumulated 

up until… he did 1.4 time 30 plus 0.03 times 30. 

R&B S 

R&B M_nr 

C TB_r 

Roy and Don first split the bit into two smaller bits. They recognize and build-with 

preliminary knowledge element P14 (time period – the difference between the start 

and end time of a time interval gives time period of the time interval) to get the time 

length of each bit. They then use the numeric representation to calculate the amount 

added in each split bit, hence recognize and build-with M_nr. They sum the amount 

added in both split bits (recognize and build-with S), thus expressing the construction 

of TB_r (Tiny Bit reduction). In their way of solving the pair did not use a previously 

calculated amount (up to minute 1.4), as they were instructed, but rather calculated 

it again. In the following questions, which followed 2 and 3 (as described above), 

they did consider the amount that was already calculated as they were instructed. For 

example, in (3), in order to calculate the amount of water added up to minute 1.433 

by using the amount of water added by minute 1.432 (which they have already 

calculated to be 42.96), as can be seen in Figure 9. 

 

Figure 9. Tiny bit reduction by Roy 

Ana and Zoe, also express the construction of TB_r (Tiny Bit reduction); however, 

they did not recognize nor build-with M_nr, but rather, they again (see section 5.1) 

recognize and build-with preliminary element P6 (proportion) as can be seen in 

Erreur ! Source du renvoi introuvable.. 

Figure 10. Using quantities proportion in Tiny Bit reduction by Ana and Zoe 

5.7. Area under the graph represents the amount of water added to the pool 

in case of a RoC in segments (A_cs)  

In the case of a constant RoC, the bit that accumulates has a graphical representation 

namely that the amount accumulated by that bit is represented by the rectangular 
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area of the bit (knowledge element M_gr); the process of constructing this 

knowledge element was described in section 5.4. This knowledge is naturally 

generalized to a RoC that is constant in segments: the area in a time interval under 

the RoC graph and above the time axis represents the amount of water accumulated 

in this time interval.  

In the case of a RoC constant in segments, the students were given two graphs, which 

are constant in segments, representing the rate of flow in pool A and in pool B in 

separate coordinate systems. Both coordinate systems are empty but have identical 

units. The students were asked how they could determine whether the amounts 

accumulated in the two pools are equal or not. Ana counted 18 squares under the 

graph  representing the rate of filling of pool A and above the horizontal axis, and 

16 squares under the graph representing the rate of filling of pool B, as shown in 

Figure 11, and determines that the amount of water accumulated in pool A is greater 

than in pool B. Ana then explains that the area under the graph represents the amount 

of water that was accumulated, hence expressing the construction of A_cs – that the 

area under the graph in case of a RoC which is constant in segments represents the 

amount of water accumulated. 

 

Figure 11. Counting the squares under RoC graph to compare the accumulated amounts by 

Ana 

5.8. Area under the graph represents the amount of water added to the pool 

in case of a linear decreasing RoC (A_dl) 

In the third part of the activity, the students are given a graph representing a linear 

and decreasing rate at which a pool is filled with water (Figure 12).  
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Figure 12. Linear and decreasing rate of flow 

The students Don and Zoe (from two different pairs) first exhibit a chunky way of 

thinking by suggesting splitting the time to 1-minute bits, and multiply the rate (at 

the left border of the interval) with the time in order to get the accumulated amount, 

meaning they recognized M_nr and S. However, their partners Roy and Ana 

(separately in each pair) said that this is not applicable since the rate of flow is not 

constant. In order to draw the accumulation function, each pair then split the time 

into 1 minute length bits, calculating the area of the respective trapezoid, hence 

expressing the construction of A_dl and recognizing and building-with it. They also 

sum up the consecutive bits to get the accumulated amount, hence recognizing and 

building-with S. Ana’s way of doing this is shown in detail in Figure 13 where the 

horizontal axis represent the time of filling (min) and the vertical axis represents the 

amount of water (liter).  

 

Figure 13. Ana’s accumulation function  
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5.9. In the case of a linear and decreasing RoC, the bits are decreasing (DB) 

and the Accumulation function is concave downward (AFDL) 

In the third part of the activity which deals with linear and decreasing RoC (Figure 

12), the students are also asked what can be said about the amounts of water that are 

being added to the pool. Don and Roy answered that the amounts are getting smaller 

and when they are asked by the researcher to elaborate, Don says: 

It can also be seen according to the area of each part. Of each moment…by the area 

of the graph at any moment. In the first second the area is the largest, and in the 2nd 

second the area starts to get smaller. 

When he was asked by the researcher to show the areas that he refers to, he referred 

to the graph representing the rate of filling as a function of time and pointed out the 

areas that were marked by his partner, Roy, as I, II, III, IV, VI as shown in Figure 

14. 

 

Figure 14. Numbering the bits by Roy 

In his answer, Don expressed the construction of DB (in case of a decreasing RoC, 

the amounts added with the same time interval are getting smaller). The process of 

constructing DB occurs by recognizing and building-with previously constructed 

knowledge element A_dl (the area under the graph in case of a linear decreasing RoC 

represents the amount added). He then recognizes and builds-with DB to explain why 

the accumulation function is concave downward, hence constructing AFDL.  

To answer why the accumulation function is concave downward, Nick said: "The 

rate at which the pool is being filled decreases, resulting in a decrease in the amount 

of water added to the pool". To answer the same question, Ana explained that the 

graph is concave downward since the amounts that are being added are gradually 

decreasing. In her answer Ana expresses the two components of Accumulative 
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Thinking: she expresses knowledge about the bits, describes the accumulation 

process as dynamic and applies both to draw the graph (Figure 13). 

6. Discussion 

The learning activity designed for this research aimed to develop Accumulative 

Thinking (see section 2). The analysis of the students' work allows us to argue that 

the goal was met (see section 5). In this section, we will discuss the various properties 

of the learning activity and its approach to integration that we believe may help 

smooth the transition from secondary to tertiary studies on the subject of integration, 

based on the analysis of the students' work. 

6.1. Adopting RoC as the didactical base and using the pool context 

As mentioned, the didactical base for learning accumulation can be viewed as 'adding 

up pieces' or as derived from RoC (Ely & Jones, 2023). In this research, we adopted 

the latter approach. RoC is a crucial concept for integration and is formally taught at 

the tertiary level. However, it is a challenging concept for secondary students. To 

address this, the activity proposed here uses an extra-mathematical context (see 

section 1.3) of a pool being filled with water. When calculating the amount of water 

added with a constant RoC, Ana and Zoe did not multiply the time duration by the 

rate. Instead, they used their perception of water accumulating at a constant rate and 

its proportional property: the ratio of the amounts of water flowing in two different 

time intervals equals the ratio of the lengths of the time intervals (see section 5.1, 

Figure 2). The pair circumvented the difficult notion of RoC by relying on their 

understanding of the context to find the amount of water added in various time 

intervals. 

We chose the pool context because we believe that in this context high school 

students can naturally grasp the accumulation process. The analysis suggests this 

hypothesis has been verified. For example, Zoe wrote, "…Consequently, the water 

accumulates and rises without any instances of descent due to accumulation"; 

observing a pool being filled with water, Zoe sees the process of accumulation 

through the rising water level. This contrasts with the context of distance over time, 

where the accumulation of distance is not tangible, making it harder to visualize its 

dynamic and continuous process. As for RoC as a didactical base, Elias et al. (2023) 

also found evidence that the pool context helps students grasp RoC intuitively, 

enabling meaningful action and reasoning. 

Another reason for using an extra-mathematical context is the prior knowledge of 

secondary students. Not using such a context would require a formal mathematical 

context, presenting the RoC function as a derivative function. Introducing the term 

'derivative' might lead secondary students to apply their existing knowledge about 

the connection between a function and its derivative, diverting their focus from the 
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accumulation process. Our design decision addresses the gap between secondary and 

tertiary levels, serving both levels. It enables the use of the RoC concept in an 

informal, context-dependent manner at the secondary level, supporting later formal 

studies at the tertiary level. 

6.2. The relation between a RoC function and its accumulation function. 

The accumulation approach has been developed within the framework of 

quantitative reasoning (Thompson, 2022), relating directly to the meaning of the 

integral in contextualized situations, such as the pool used in this research. Most high 

school students will encounter integrals mainly in contextualized situations during 

their later studies. Only the few who major in pure mathematics will focus on the 

integral as an abstract mathematical object. 

The accumulation function is constructed from a given RoC function, approximating 

its antiderivative, specifically the antiderivative whose value at the beginning of the 

accumulation process is zero. In other words, the derivative of the accumulation 

function approximates the given RoC function. Hence, the approach includes the 

Fundamental Theorem of Calculus (though this research did not explicitly address 

that issue). Therefore, our approach offers the advantage of a single notion of integral 

as accumulation function and its value, rather than two notions, definite and 

indefinite integrals, which are only vaguely connected for most of high school 

students (see section 1.2). 

6.3. Riemann sums and accumulation 

At the university level, integrals are usually approached via Riemann sums. In many 

countries, this approach is considered “beyond the students” at the secondary level, 

exemplifying Klein’s (2007) first discontinuity between secondary and tertiary 

levels. The accumulation approach to integration is closely connected to Riemann's 

definition of the integral as the limit of a sum of products. If the variable of 

integration is time, the products are of the form time duration × RoC in that interval, 

giving the 'bits' that accumulate. Accumulative Thinking as introduced here includes 

these accumulated bits and the dynamism of the accumulation process. 

6.3.1. Sums of products 

Throughout the learning activity, students dealt with summing products of time 

intervals and positive RoC (see section 5). Given a positive RoC, the product resulted 

in a positive value. In the case of a negative RoC, the product results in a negative 

value. Therefore, the students’ success in constructing knowledge in the case of a 

(positive and) decreasing RoC, suggests that knowledge about the numerical and 

graphical representation of a bit might also help overcome difficulties when dealing 

with a negative RoC (see section 1.2), aiding in understanding why a definite integral 
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of a negative function results in a negative value and the relationship of this value 

with the area bounded by the function and the 𝑥-axis. Promoting the understanding 

of the sum of products may prevent students from acquiring only formal techniques, 

as reported by researchers (e.g., Thompson & Harel, 2021). 

Although accumulation is a basic notion in daily life, thinking about accumulation 

is challenging for students since they struggle to conceptualize the bits being 

accumulated (Thompson & Silverman, 2008). Moreover, understanding the 

accumulation function is not trivial, as its values depend on those of another function, 

the RoC function. To address these difficulties, the activity asked the students to 

calculate the accumulated amounts for time intervals of varying size supporting them 

in thinking flexibly about the added amounts, (see sections 5.1 and 5.6). They 

summed the bits to get the total accumulated amount for various RoC functions 

(constant, segmented constant, and linear and decreasing RoC) and built an 

accumulation function by referring to the accumulated amounts as the function's 

values. Introducing secondary students to accumulated amounts and the 

accumulation function in an accessible way supports their later tertiary studies. 

Additionally, describing the accumulation process as a sum of products can prepare 

secondary students for the introduction of Riemann sums at the university level. 

6.3.2. The dynamic nature of the accumulation process 

To address the dynamic nature of the accumulation process, the design included tasks 

requiring students to calculate the accumulated amount in reduced time intervals (see 

section 5.6). To help students grasp the dynamic and continuous nature of the 

accumulation process, the design used the context of a pool being filled with water 

and offered an animation illustrating the accumulation on a given RoC graph. This 

animation, serving as a visual demonstration at the secondary level, proved useful 

and efficient, aligning with previous research findings (Monaghan et al., 2019). This 

efficiency is supported by the analysis; for instance, when discussing what the 

animation represents (section 5.4.1), Ana said, "… imagine you have a pool, you 

don’t have 30 liters of water straight away." Observing a pool being filled with water, 

Ana sees the accumulation process as dynamic and continuous. Similar animations 

could play a more sophisticated role at the tertiary level as a "grounding metaphor," 

relating a target domain within mathematics to a familiar source domain outside it, 

creating a conceptual relationship between the two (Lakoff & Núñez, 2000). 

Grasping the accumulation process as dynamic at the secondary level may prepare 

students for later studies, where summing an infinite number of bits with 

infinitesimal width is introduced at the tertiary level. It may also support the complex 

nature of covariational thinking, which is necessary for understanding accumulation 

(Thompson & Silverman, 2008). 
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6.4. Shifting from the accumulation function of a RoC constant in segments 

to that of a linear and decreasing RoC.  

At the tertiary level, shifting from a RoC that is constant in segments to a varying 

RoC (such as a linear decreasing one) requires an understanding of limits and 

instantaneous rate. For a RoC constant in segments, students multiplied the constant 

rate by the time duration to get the accumulated amount. The chosen extra-

mathematical context of a pool filled with water supports this multiplication 

intuitively when the RoC is constant. However, this method is not applicable in the 

case of a linear RoC and requires an understanding of notions not yet available to 

secondary students, such as instantaneous rate. This difficulty is expressed by Zoe 

and by Don when they suggest calculating the accumulated amounts of bits for a 

linear and decreasing RoC by multiplying time duration by the rate of the left border 

of the time interval, as if the rate were constant. To address this gap, the learning 

activity provided opportunities to construct knowledge about the area under the 

graph as a representation of the amount added (see sections 5.7 and 5.8), thus 

enabling the students to handle an accumulation function of a linear and decreasing 

RoC. Constructing this knowledge proved helpful for the students. As the analysis 

shows, the partners of Zoe and Don suggested a more precise procedure by using the 

area under the graph as a representation of the amount added to perform the 

calculations (see section 5.8). We argue that in this case the concept of “area beneath 

the graph” became an epistemological mediator for students’ exploration. It seems 

that this mediator has a very concrete meaning for students as the graphical 

representation of the accumulated quantity. 

7. Conclusions 

The mathematics curriculum in many countries extensively employs mathematical 

concepts to describe real-world scenarios; our findings illustrate a reversal of this 

relationship. The students make use of the extra-mathematical context derived from 

everyday life to grasp and explain mathematical concepts. We speculate that this 

phenomenon may become more pronounced when students generalize these ideas to 

new and unfamiliar situations. For instance, when explaining negative RoC, students 

may employ a narrative that depicts water being drained from a pool. 

Based on the findings presented in this paper, we argue that our research could be 

useful as a didactic and methodological approach to teaching and learning integral 

calculus throughout the educational continuum, from secondary to tertiary 

education. Informal classroom observations in an 11th grade class that used the same 

learning activity show that students used the pool context as an anchor, applying it 

to pure mathematical contexts. However, it is important to note that we are currently 

in the early stages of classroom investigations. Further empirical studies of 

significant duration are necessary to validate these conjectures. These studies should 
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explore whether the knowledge construction observed in this research generalizes to 

more complex flow rates, whether and how other extra-mathematical contexts aid 

students in developing Accumulative Thinking, and what are the effects of 

introductory activities like the one presented here on the long-term understanding of 

the integral concept. 

Undoubtedly, this mission is ambitious. However, there is some optimism since an 

accumulation approach to integration has gained increased prominence world-wide, 

on the basis of an approach based on quantitative reasoning (Thompson & 

Silverman, 2008). This approach has been shown to be particularly appropriate for 

applying integration in STEM subjects (Jones, 2015b), and locally has been adopted 

as a guideline for integration in a new advanced level high school curriculum 

(Dreyfus, Kouropatov & Ron, 2021). 
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