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BUILDING THINKING ABOUT GRAPHICAL ANTIDERIVATIVES: THE 

ROLE OF INTERVAL PERSPECTIVES 

Abstract. The concept of function traverses the mathematics studied at school and university 

and is an important transitional link between the two. We examine how an interval 

perspective on function may help with constructing graphical antiderivative functions. In 

doing so a number of important constructs needed to build such a graphical understanding 

are considered, along with how the students in the study linked them and built with them. In 

addition, some of the difficulties they faced and possible reasons for them are explained. The 

evidence presented shows that an interval perspective on function was important in being 

able to construct antiderivative functions graphically. Hence, we propose that this interval 

perspective on function may prove useful in helping students in transition to construct a local 

perspective on function. In turn we suggest what a potential path for thinking about graphical 

antiderivatives could look like and the kind of activities that could assist transition students 

along it. 

Key words. Abstraction, Transition, Calculus, Graph, Antiderivative, Interval Perspective. 

Résumé. La notion de fonction traverse les mathématiques étudiées à l’école et à l’université. 

Cet article examine comment une perspective d'intervalle sur les fonctions peut aider des 

étudiants à construire graphiquement des fonctions primitives. Un certain nombre de 

concepts importantes nécessaires à la construction d'une telle compréhension graphique sont 

examinés, ainsi que la manière dont les étudiants de l'étude les ont reliés et ont construit avec 

eux. Les résultats montrent qu'une perspective d'intervalle sur les fonctions était importante 

pour pouvoir le faire. Par conséquent, nous proposons que cette perspective d’intervalle sur 

les fonctions puisse s’avérer utile pour aider des étudiants en transition à construire une 

perspective locale sur les fonctions. En retour, nous voyons à quoi pourrait ressembler une 

voie potentielle de réflexion sur les primitives graphiques et le type d'activités qui pourraient 

aider les étudiants à faire la transition dans cette voie. 

Mots clés. Abstraction, transition, analyse, graphe, primitive, perspective d’intervalle. 

In many parts of the world, there is a shift in the way mathematics is taught in school 

to the way it is taught in university (Thomas et al., 2015). This has variously been 

described as a shift from focusing on techniques that have pragmatic value (in 

solving tasks) to those of epistemic value (providing insight into the mathematical 

objects and theories studied) (Artigue, 2002); from application of techniques to their 

justification and significance within a mathematical theory (De Vleeschouwer, 

2010); and from problem-solving skills to more abstract, rigorous, logical deductive 

reasoning (Engelbrecht, 2010; Leviatan, 2008).  
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During this transition, students often have difficulties with calculus topics (Thomas 

et al., 2015) such as function (Dias et al., 2008), mathematical argumentation 

(Farmaki & Paschos, 2007), real numbers (Ghedamsi, 2008), infinite series 

(González-Martin et al., 2011) and limits (Mamona-Downs, 2010; Oehrtman, 2009). 

Research has identified graphical antidifferentiation and its relationship with 

integration as a particular area of weakness for students transitioning to university 

(Jennings, 2011; Thomas et al., 2015). To help surmount these difficulties, 

Thompson and Carlson (2017) maintain it is essential that school students build 

quantitative and covariational ways of thinking about function since these are 

foundational for learning calculus. In addition, Jones (2015) demonstrated the value 

of a multiplicatively-based summation conception based on ‘adding up pieces’ in 

order for students to make sense of definite integrals. Both of these approaches 

require a specific kind of thinking about functions, namely an interval perspective. 

We explore how an interval perspective about functions can support students in the 

transition between the more technical integration skills they usually acquire at high 

school and the more conceptual ones they need at university, and specifically in their 

understanding of the graphical antiderivative. This, in turn, can lead them to see 

integrals as accumulation functions, leading to the Fundamental Theorem of 

Calculus (Jones, 2015; Thompson & Silverman, 2008). We show that students can 

develop an interval perspective on function through suitable activities that help them 

build and make sense of key antiderivative constructs and thus assist them in the 

transition to tertiary study. 

1. The Interval Perspective 

The notion of ‘interval perspective’ comes from a classification of four perspectives 

that are thought to support versatile thinking (Thomas, 2008) about functions: 

pointwise (or punctual), local, global (Vandebrouck, 2011; Montoya-Delgadillo, 

Páez Murillo, Vandebrouck & Vivier, 2018) and interval (Thomas et al., 2017). Each 

perspective directs attention to units of different sizes, ranging from a single point to 

the whole of a function’s domain. A pointwise perspective focuses on 

correspondences between two sets of numbers, an element and its image, whereas a 

global perspective allows one to recognise and compare functions, to identify global 

properties, or to perform transformations, such as translations. Local and interval 

perspectives both focus on domain intervals of different scales. A local perspective 

focuses on very small intervals, such as finding the rate of change of f at the point 𝑥0 

using [𝑥0, 𝑥0 + ℎ] and lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
 . In contrast, an interval perspective focuses 

on larger intervals, such as the concavity of a function 𝑓′′(𝑥) < 0 on 𝑥 ∈ [𝑎, 𝑏], or 

the average rate of change of the function on a larger interval [𝑥0, 𝑥1], 
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
. 
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School calculus often highlights pointwise and global perspectives, whereas the 

teaching of calculus at university often focuses on a local perspective more often 

than in High School, using techniques from analysis (Fernández-Plaza et al., 2013). 

This often causes difficulty for students. Vandebrouck (2011) claims that when 

secondary school calculus shifts from an initial construction of pointwise and global 

perspectives to continuity or differentiability it tends to erase the pointwise and 

global points of view but doesn’t allow students to reach a local point of view. 

Further, he asserts that when students are asked to solve tasks where algebraic 

techniques are insufficient they are then unable to develop a local perspective or to 

consider functions as complex objects with pointwise as well as global properties. 

The crucial role that function perspectives play in the secondary-tertiary transition 

has also been noted by Gueudet and Thomas (2020). 

Although school calculus often focuses on pointwise and global perspectives, 

interval perspectives are useful when learning about graphical antiderivatives. 

Consider the graphs of two functions, 1a and 1b provided in figure 1, with their 

antiderivatives directly below, 1c and 1d. A student may be able to recognise, 

globally, that each graph is similar to a parabola and hence the antiderivative should 

be similar to a cubic graph (this also involves recognising the parabolic nature of the 

graphs and recalling the form of its antiderivative). However, this is insufficient to 

solve the problem of drawing each antiderivative. Pointwise properties can help. For 

example, graph 1b has two points where the gradient is zero (at x = 1 and x = 3), 

while graph 1a has none. But an interval perspective provides additional information, 

such as intervals where the two antiderivatives have positive and negative gradients; 

graph 1a tells us that the antiderivative graph 1c will always be positive in gradient, 

whereas graph 1b provides the information that the antiderivative graph 1d will be 

positive on two intervals 𝑥 < 1 and 𝑥 > 3, and negative on the interval (1, 3).  

The transition from school to university is often encumbered by a difficult transition 

from pointwise and global perspectives (with a focus on technical procedures) to 

local perspectives (to explore concepts). We examine the feasibility of using the 

interval perspective to help students construct and make sense of concepts of 

graphical antiderivative, with the hypothesis that it can act as a bridge for developing 

a local perspective and conceptual understanding of the graphical antiderivative.  
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Figure 1. The need for pointwise and interval perspectives 

2. Abstraction in Context 

To analyse students’ understanding of graphical antiderivatives, we use a socio-

cognitive framework, based on Abstraction in Context (AiC), where abstraction is 

defined as an activity vertically reorganising previously constructed mathematical 

knowledge into a new structure1, and the context includes classroom and curricular 

aspects of the learning environment as well as students’ prior learning experiences 

(Hershkowitz et al., 2001; Dreyfus et al., 2015). Abstraction is a central process in 

 

1 This definition owes much to the pioneering work of the Freudenthal school of Realistic 

Mathematics Education and their development of the concept of vertical mathematisation 

(see e.g., Treffers & Goffree, 1985). 

1a 1b 

1d 1c 
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the learning of mathematics. From this perspective structure results from the process 

of abstraction.  

An operational model used as a lens for observing abstraction, developed through 

successive iterations (Schwarz et al., 2009), comprises nested epistemic actions, and 

has been applied to complex processes of abstraction and environments rich in social 

interactions (Dreyfus et al, 2001, 2015). The model, called the RBC+C model, 

comprises three epistemic actions: recognising; building-with; constructing. Here 

recognising occurs when a student realises that a mathematical construct they are 

familiar with is inherent in a mathematical situation. This may be through analogy 

with the known construct or through specialisation, where the more general known 

construct is seen to have a specialised application in the situation. The action of 

building-with consists of combining existing constructs to attain a goal, such as 

solving a problem or justifying a statement. However, the central step of abstraction 

is the action of constructing, where existing knowledge constructs are assembled and 

integrated by vertical mathematisation to produce or use a new construct.  

The nested nature of the epistemic actions in abstraction is such that “constructing 

incorporates the other two epistemic actions in such a way that building-with actions 

are nested in constructing actions and recognising actions are nested in building-with 

actions and in constructing actions.” (Dreyfus et al., 2001, p. 310). Further Dreyfus 

et al. (ibid.) argue that abstraction passes through three phases: a need for a new 

structure; the emergent construction of a new construct; and finally the consolidation 

of the new construct through repeatedly recognizing it and building-with it in further 

activities (Schwarz et al., 2009). Consolidation is a long term process during which 

the new construct becomes freely and flexibly available. Criteria to infer the 

consolidation of a construct include immediacy, self-evidence, confidence, 

flexibility, and awareness (Dreyfus & Tsamir, 2004).  

When students learn in a classroom context Hershkowitz et al. (2007) observe that it 

is important to address how individuals interact with other students in a group as 

they follow parallel processes of abstraction. In our analysis of student activity of 

building a graphical understanding of antiderivative functions we will employ this 

framework because it has proved useful to describe the construction of knowledge 

by small groups of interacting students and thus provides a methodological tool to 

examine how an interval perspective on function may arise and be employed. In 

order to carry out this examination, we designed  a sequence of activities, and 

implemented it with a pair of students at the transition from school to university; we 

observed their process of constructing knowledge (using AiC), focusing on the 

emergence and use of an interval perspective when dealing with graphical tasks 

involving antiderivatives. 
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3. Method 

This study is part of a larger project2 that explored students’ versatility of thinking 

(Thomas, 2008) as they recognise, build, construct and consolidate (Hershkowitz et 

al., 2001) concepts in calculus. Initially, we intended to study the thinking of students 

in their final or penultimate year of secondary school, but due to data collection 

constraints and opportunities, decided to focus on students in a first year 

undergraduate mathematics course in a large university in New Zealand. This 

undergraduate course was considered a ‘bridging’ course, as it was designed for 

students who had not completed the final year of calculus at secondary school. The 

course covered topics ranging from algebra and trigonometry to single variable 

calculus. 

The two participants reported in this study, Amy and Jay, were enrolled in this 

‘bridging’ course, and had recently finished learning about integration and 

differentiation when they participated in the study. Their exposure to 

antidifferentiation in the course was largely limited to procedure-based rules for 

finding antiderivatives in symbolic form. Graphical antiderivatives are generally not 

taught in New Zealand schools and they had not worked with them before. Hence, 

they were ideal subjects to examine knowledge construction in this area. 

Amy and Jay volunteered to work together on antiderivative tasks in four 1-hour 

sessions over two weeks, outside of class time. The sessions took place in a small 

room where they had use of a large table space, as seen in figure 2. They were given 

a monetary voucher in compensation for their time, but no course credit for 

participating in the research. They knew each other from the bridging course from 

which they were recruited, but they had not previously met the researcher, who was 

present during each of the sessions to clarify instructions and offer encouragement 

but who refrained from guiding them mathematically.  

 

Figure 2. A room setting as Amy and Jay worked on the tasks  

 

2 Ethics approval was obtained for the research study. 
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Each session comprised a sequence of graph-based tasks, designed by the authors,  

that explored properties of graphical antiderivatives, involving drawing 

antiderivative functions and reasoning about local extrema, the constant of 

integration, concavity and points of inflection. Since the research team wished to 

avoid instances where students could rely on pre-learned procedures, the calculus 

concepts were deliberately presented graphically in the tasks rather than 

symbolically, with little or no numerical information given on the graph axes. The 

graphs were deliberately drawn so the functions did not resemble familiar 

polynomials and no algebraic equations were provided for the functions. The tasks 

were given to the students one at a time, but they had access to all previously 

completed tasks. The students were videotaped and audiotaped as they worked, and 

transcripts of their speech and actions created. 

4. Results and Analysis 

We present four snapshots of Amy and Jay’s work in the first two sessions. In each 

of these we will see how an interval perspective on function enabled them to build 

key constructs of graphical antiderivatives. The transcripts have been analysed using 

the methodology of Abstraction in Context as explained by Dreyfus et al. (2015) but 

the full details of this analysis are not presented here in order to keep the paper 

reasonably short and retain the flow from one episode to the next. 

4.1. Snapshot One: The emergence of a global-interval perspective 

In the first session, students were presented with the distance-height graph of a 

tramping track (hiking trail), and were asked to plot a graph of the gradients of the 

track (see figure 3). This is mathematically equivalent to drawing the graph of a 

derivative of a function, given the graph of the function itself. This snapshot shows 

how Amy and Jay were able to move their thinking from a primarily pointwise 

perspective to an interval one, and how this provided a breakthrough in their progress 

towards a solution to a task. 
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Figure 3. The graph of the initial tramping track and the gradient graph produced by Amy 

and Jay. Note, a second gradient graph was also drawn on the same axes for another 

tramping track of less amplitude.  

After completing this task, Amy and Jay were then asked to work in the opposite 

direction. They were presented with a graph of the gradients of a tramping track (see 

figure 4) and asked to produce its distance-height graph. This was mathematically 

equivalent to finding the antiderivative of a function presented graphically, with no 

specific values given. 
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4a 

 

4b 

Figure 4. The tramping track task (the second graph, 4b, was presented directly below the 

first). 

Amy suggested a method for numerically approximating the area, saying, “You 

could add up all the little squares and consider them to be one hundred…if you just 

do it that way adding up the squares”. This corresponds to the Recognition phase of 

the RBC+C framework, since she recognised the potential value of a previous 

construct. However, attempts were quickly abandoned and she suggested a 

completely different approach. 

Amy  421 Basically because this [points at a function 

graph from figure 3] is like kind of similar to 

that [the gradient graph in figure 4a] except 

this part [points at the first minimum of graph 

4a] is smaller which says that… Which seems 

to mean somehow that this gradient doesn’t 

decrease at the same rate it has increased here, 

so I’m thinking it might go up like this, and 

then this side coming down is not quite as 

steep [traces pen along the function graph in 

the warm-up task] because it doesn’t 

continue, like this is not as big as here, and 

that’s maximum steepness [points at the 

gradient graph in figure 4a]. It’s steeper than 

the bit coming down [traces pen along the 

first positive, decreasing section of the 

gradient graph], …and then not quite as steep 

as and then a really flat gradient again and 

then go down again. Because there is another 

point where the gradient is zero, but it’s not 

[draws a rough sketch–see figure 5]. 

Pattern 

matching 

approach 

Global and 

pointwise 

perspectives 

 

 

 

 

Interval 

perspective 
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Figure 5. Amy’s rough sketch of the first part of the antiderivative. 

Speaker Line # Transcription and comments Analysis 

 Amy 423 …I like this one [points at her 

rough sketch in figure 5]. How did 

I do it? I don’t know if that makes 

sense, I’m not sure about this bit 

here basically [circles the section 

in figure 4a where the graph is 

negative and then positive again– 

see figure 6]. 

 

 Jay 424 That is true that when these are 

zero [points at the second and 

third x intercepts in figure 4a] 

then that should be..[pause] 

Pointwise perspective; 

recognises the relevance 

of a zero gradient 

 Amy 425 So there should be two flat bits 

here [points at figure 3]. 

Builds-with the zero 

gradient to get a 

horizontal tangent on the 

antiderivative 

 Jay 426 One there, one there and one there, 

[points at the second, third and 

fourth x-intercepts in figure 4a] so 

there are three during the track 

itself. 

Pointwise perspective; 

agrees with Amy about 

the zero gradients 

 Amy 427 Flat bits, and then decreasing 

[looks at figure 4]. Yeah there’s 

got to be two other flat bits. Three 

other flat bits. Oh no wait a second 

because when we did this there 

was [points at figure 4, and then 

looks confused]. 

Starts the move to an 

interval perspective 

 428 ..[pause]  
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 Jay 429 This thing is this is just not going 

to work for every single..[pause] 

 

 Amy 430 I reckon it’s like this, it’s a big hill 

and then a little hill [traces this on 

her page] 

The breakthrough using 

an interval perspective 

 Jay 431 And then  

 Amy 432 Because if you split this into two 

[lays a pencil vertically through 

the third x-intercept in figure 4a] 

you’ve got two graphs that are like 

this [points at function graph at 

the top of figure 3] except that 

some of the steepnesses are going 

to be different. Generally I think 

that.. 

Interval perspective; a 

pattern matching strategy 

is emerging; Amy has 

shifted her attention from 

the interval that was 

problematic for her 

(utterance 423, figure 6) 

by segmenting the given 

graph (figure 4a) into two 

intervals, each containing 

one maximum and one 

minimum 

 Jay 433 So, you’re quite right.. then in this 

first half..[pause; agrees] 

 

 Amy 434 A bit one and then this second on 

is like not as flat, flatter, like there 

is a steep hill and then a flat hill. 

[traces this on the page] You 

know how this graph went that 

way [picks up one of the 

worksheets] So we thought that 

that would be smaller so if you 

think about that and these ones are 

smaller than this then the second 

hill would be there. [indicates this 

by pointing at her sketch of the 

antiderivative graph]. 

Global interval 

perspective; recognises 

the value of the derivative 

approach; pattern 

matching using reverse 

thinking from the 

derivative graph in figure 

3 
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Figure 6. The parts of the graph circled by Amy, shown here in an oval (see Line 423) 

Amy’s identification of this pattern suggests the students are using the construct, 

‘similar graphs or sub-graphs have similar antiderivatives’. We see this in Amy’s 

insight (see line 432) that the given derivative graph can be split into two parts, each 

interval with a similar shape but first “a big hill and then a little hill” (430), and hence 

a similar antiderivative. In turn, she notices that they can apply the warm-up activity 

(figure 3) in reverse to each of these interval parts to obtain two parts to the 

antiderivative, each having the general shape of the graph at the top of figure 3.  

 

Figure 7.  Amy and Jay’s solution to the task using a pattern matching approach. 

Her conjecture is that the difference between the two ‘hills’ or graph parts is that 

there would be “a steep hill and then a flat hill” (434). It is unclear how she arrived 

at the smaller ‘hill’, whether through the lower gradient for the second part or simply 

a wrong matching of the corresponding height of the relative maxima on the gradient 

graph. However, in this manner they were able to employ the similarity of shape 

construct and building-with it managed to complete the task to draw the 

antiderivative, as seen in figure 7. 
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4.2. Snapshot Two: Employing an interval perspective to construct turning 

points 

In the second session3, covered in this snapshot, we present evidence that Amy and 

Jay are able to reason with function intervals on either side of a zero value in the 

derivative function and to see the value of this perspective in enabling them to 

construct a maximum or minimum on the antiderivative graph. In doing so, Amy and 

Jay showed that they had constructed the following constructs, labelled E1-E4, 

which require both pointwise and interval perspectives: 

E1:  When the function is positive/negative at a given point the antiderivative is 

increasing/decreasing at that point. [pointwise perspective] 

E2:  When the function is positive/negative in a given interval the antiderivative is 

increasing/decreasing in that interval. [interval perspective] 

E3:  When the function is zero at a point the antiderivative has a turning point 

there. [pointwise perspective] 

E4:  When the function goes from negative to zero to positive on an interval then 

the antiderivative has a local minimum point there. [interval perspective] 

Figures 8 and 9 show examples of Amy and Jay’s reasoning during this session in 

support of the above claims. For example, in figure 8a we see a statement providing 

evidence that they had constructed E1 for the point x = a on the given graph. 

Similarly, construction of E2 is demonstrated in figure 8b (where the interval is 

clearly marked) and E3 and E4 in figure 8c, where a local minimum at the point 

where x = b is described along with reasoning via an interval perspective, that “the 

gradients [plural] are going from negative to positive”. 

 

3 Transcript line numbering started from 1 again in this session. 
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Figure 8. Evidence for construction of antiderivative ideas E1-E4. 

They were also able to integrate their knowledge of these constructs in a building-

with phase, correctly drawing the antiderivative graph of a decreasing function (see 

figure 9). In this process they state that the “gradients are going from positive to 

negative on the gradient function graph” and have constructed E5, closely related to 

E4, but identifying a local maximum. Once again they are clearly seeing the 

‘gradients’ in an interval on either side of the zero value. 

E5:  When the function goes from positive to zero to negative on an interval then 

the antiderivative has a local maximum point there. [interval perspective] 

8a 
8b 

8c 

We know b=0 so 

we know that b on 

the antiderivative 

function is a 

turning point. As 

the gradients are 

going from 

negative to positive 

b is a local 

minimum 

The 

antiderivative 

function is 

decreasing 

during this 

interval

At x=a the 

antiderivative 

function is 

decreasing as 

the gradient 

of x=a in the 

y=f(x) is 

negative
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Figure 9. Using an interval perspective when building-with E1 – E4 to construct E5 and 

draw an antiderivative graph. 

4.3. Snapshot Three: An interval perspective enables reasoning on a local 

maximum 

Next, Amy and Jay work on questions designed to support them in the antiderivative 

of the function shown in figure 10. This raised the issue of how to deal with a 

maximum gradient. This snapshot details observations of Amy and Jay’s reasoning 

on the intervals either side of a local maximum on the derivative function to construct 

information on the antiderivative graph. 

 

 

 

 

 

 

 

 

 

Figure 10. Amy and Jay are asked to draw a graph of the antiderivative of this function. 

Gradients are 
going from 

positive to 

negative on 

the gradient 

function graph 

y 
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First, they recognise the usefulness of constructs E1-E5 above, and work with them, 

as they had previously done. 

Jay  209 Yup, but this one starts as negative 

[points at the positive, increasing part 

of the graph in figure 10]. 

Recognises E2, on 

intervals 

Amy  210 Negative to positive to negative again. Interval perspective, 

confirms E2 relevant 

Jay  211 So, turning points are here [points at 

the two x intercepts in figure 10]. 

Recognises and builds-

with E3, at points where 

the function is zero—

pointwise perspective 

  …   

Amy  220 And then negative. That’s kind of 

what we said eh? That means it’s 

going to be going down, decreasing, 

and it’s going to be..[marks the 

interval between the second x-

intercept and the right end point in 

figure 11] 

Interval perspective; 

builds-with E2 

 

Jay  221 So basically like the two graphs we 

just did together..  like that [draws a 

vertical line through the local 

maximum of the graph – see figure 

11]. 

Interval perspective; 

Dividing the graph into 

two intervals, he sees the 

similarity with the pattern 

of the two previous 

examples, and this 

enables them to build-

with E4 and E5 

Amy  222 So it’s kind of like what we had eh? Confirms the similarity 

Here Jay uses an interval perspective to recognise (Line 221) that if the graph of the 

function in figure 10 is divided through its local maximum point then, using the two 

resulting intervals, it may be seen as a composite of the two types of graphs they had 

previously considered in figures 8 and 9. They then build-with this idea by inferring 

that they can combine their previous antiderivatives from these two tasks to draw the 

antiderivative of the graph in figure 10. In their solution the vertical line dividing the 

graph in two is clearly visible, as is the solution, which builds-with E4 and E5, 

combining a local minimum next to a local maximum. These are seen in their 

solution in figure 11. We can also see from the shaded areas in the first diagram 

along with the words ‘negative’, ‘positive’ and ‘negative’ written along the axis that 

they have used the interval perspective seen in E1 and E2 either as a check, or to 

help construct the antiderivative graphs. 
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Figure 11. Amy and Jay’s working and solution to the graph of the antiderivative of the 

function shown in figure 10. Note, points c and d were not present while Amy and Jay 

initially worked on the question but were added by them later (see 4.4). 

However, while their pattern matching approach has enabled them to solve the 

problem it has not advanced to the point where they could construct a justification 

for why a positive/negative function corresponds to an increasing/decreasing 

antiderivative, and in particular they have not yet built the pointwise relationship 

between the local maximum of the function and the point of inflection on the 

antiderivative. In terms of the RBC+C framework we can say that they have 

recognised the relevance of constructs E1-E5 to the task, and built-with them to solve 

the problem, but have not produced a new construct.  

4.4. Snapshot Four: Emergence of a new construct—Using an interval 

perspective to construct an inflection point for the antiderivative 

In this final snapshot we briefly present evidence of how Amy and Jay reasoned from 

an interval perspective to build the construct of the antiderivative’s point of 

inflection. The task instructed them to attend to two points, c and d on the graph (see 

figure 12), with the instruction: ‘Consider the two points on the x-axis marked c and 

d below.  At which point is the value of the function f greater?  (i.e., is f(c)>f(d) or 

vice versa?). Discuss and write down what this means for the antiderivative of f at  

x = c and x = d.’  

In the negative 

intervals the 

antiderivative is 

sloping down 

In the positive 
interval the 

antiderivative 

slopes up 
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 Figure 12. Amy and Jay’s solutions to questions in session 2. 

As Amy and Jay’s discussed this question, they begin constructing a new and 

important idea about points of inflection. They have the versatility to consider an 

idea abstracted during school work on differentiation, a previous construct (PE).  

PE:  The maximum gradient of an increasing function, which changes from 

concave up to concave down through the point, occurs at a point of inflection. 

We note that this construct, PE, requires both a pointwise perspective, considering 

the point of inflection, and an interval perspective, to reflect on the gradient of the 

function in an interval either side of the point, where it is either concave up or 

concave down.  

Initially, they seem to be referring to the point at x=c as a point of inflection (this 

point is approximately ‘half way’ along the interval where y > 0, and is where the 

gradient appears to be a maximum on the derivative graph), even though the function 

appears concave down throughout the interval containing c. This line of reasoning 

persists for a few minutes; later they focus on the maximum of the given function f.  

Amy  282 It’s going from, it’s going from a positive 

grad, well it’s either going from a 

positive gradient to a negative gradient, 

or a negative to a positive. 

Interval perspective ; 

change in sign of gradient 

Jay  283 Not necessarily, just basically at that 

point, [points at the point of inflection on 

Pointwise perspective, 

PE: Maximum gradient at 

12b 
m is where 

the gradient 

is at its 

greatest, 

meaning on 

the F graph 

this is an 

inflection 

point 

12a 

f(d)>f(c) This 

means that d is 

closer than c to 

the inflection 

point (which is 

where the gradient 

reaches its 

maximum value) 

on the F graph 
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their antiderivative graph in figure 11] 

right where the inflection point is, [points 

at the local maximum of f] that is a 

maximum gradient there. So if you could 

draw a tangent line at that point [sketches 

a little tangent line from the point of 

inflection on the antiderivative graph] 

that would be the steeper, than anything 

on either side of it.  The gradient 

decreases whichever way you go from 

that inflection point. 

point of inflection. 

Interval perspective; the 

gradient decreases on 

either side of x=m– see 

figure 12   

Amy  284 So this particular one we could say is a 

maximum [points at the local maximum 

of f] 

pointwise perspective 

Jay  285 Well that’s true.  

Amy  286 It’s going from positive, it’s going from 

positive [holds her pencil above the 

antiderivative graph and turns it, 

indicating the different tangent lines]. 

Interval perspective using 

an embodied approach 

Jay  287 It’s still positive to here though. [points 

at the second x intercept of f] This is the 

least positive [points at the first positive, 

decreasing section of f]. 

Pointwise and interval 

perspectives 

Amy  288 It starts, it goes from being positive, it 

starts to get.. [indicates with the pencil 

the slope decreasing] 

Interval perspective, again 

embodied 

Jay 

 

 289 To turn around, yeah, it gets there [points 

at the second x intercept of f] which is 

another maximum or minimum.  It’s a 

maximum, then. 

Pointwise perspective; 

uses E5 

As Amy and Jay reflect on the question “At which point is the value of the function 

f greater?  (i.e., is f(c)>f(d) or vice versa?)" (see figure 12), they connect the local 

maximum of f to the inflection point on the antiderivative graph. 

Jay 306 Ah, OK, so what that means is, m is the 

inflection [marks the local maximum on 

the function as m, see figure 12] 

 

Amy 307 It’s reaching that inflection point eh? 

[points at the local maximum of f] Like 

this is [points at f(d)]. 

Pointwise comparison 
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Jay 308 So d is steeper than c  [points at f(d) and 

then at f(c)] Um. And it probably does 

lead to d is higher..  up..  on the derivative 

graph than c is.   

The gradient at 

𝑥 = 𝑑 on the 

antiderivative is greater 

than the gradient at 

 𝑥 = 𝑐 

Amy 309 Because if it was down here [points at the 

first negative, decreasing section of f] 

then it would be the downward slope.  

Half way down the downward slope. 

Interval perspective; 

uses E2 

… …   

Amy 313 Yeah, so..inflection point.  So, um.. So, 

shall we write f of d [f(d)] is… 

Pointwise perspective 

Jay 314 Yeah let’s do that..  [Starts writing down 

the answer to question in figure 12a] Um, 

which means..  that d..  is closer to the 

maximum or minimum, is that how you 

say it or..? 

Still building the idea 

that the maximum point 

gives a maximum 

gradient 

In lines 313 and 314 we see that Jay and Amy are using the idea of a maximum 

gradient at the point marked m to build the idea of the increasing gradient on an 

interval as points get closer to m. Thus a pointwise approach generalises to interval 

thinking through their idea of being, in general, ‘closer to’ m, i.e. in an interval. This 

idea of ‘getting closer to’ a point may indicate the start of the formation of a local 

perspective that becomes so important in the transition to tertiary mathematics. Their 

written solution shows this and describes the relationship between the gradient of F4 

corresponding to f(c) and f(d), saying that “d is closer than c to the inflection point 

(which is where the gradient reaches its maximum value) on the F”, in figure 12a. 

So although they simply state that 𝑓(𝑑) > 𝑓(𝑐) they are using the relative, pointwise 

comparison idea that being closer to the maximum gradient m implies a larger 

gradient, rather than using the general, notion that points ‘higher up’ on the graph (ie 

with a greater y-value) represent a steeper gradient. Hence, they have produced a 

new construct, E6, that identifies the location of a point of inflection on the 

antiderivative graph. In addition to constructing E6, there is evidence that they have 

consolidated it. In their discussion we see repeated, flexible recognition of this new 

construct. However, we have no direct evidence they are using an interval 

perspective to generalise to E7, that points closer to the maximum on the derivative 

graph represent a steeper gradient on the antiderivative graph.  

 

4 We use their notation F for the antiderivative of f. 
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E6:  A local maximum on the function graph corresponds to a point of inflection 

with maximum gradient on the antiderivative graph. 

E7:  The greater the value of 𝑓(𝑝) on the function graph the greater the gradient at 

𝑥 = 𝑝 on the antiderivative graph F.   

Following their discussion they wrote, as seen in figure 12b that “m is where the 

gradient is at its greatest, meaning on the F [antiderivative] graph, this is an inflection 

point.” While this was written second, as an explicit answer to the question asked in 

figure 12b, it appears that this had been constructed while working on a later 

question. 

In this snapshot we see that Amy and Jay were able to form links between school 

and university constructs, in this case between differentiation and antiderivative, 

which is an important aspect of student thinking during transition. Here, reflecting 

on the construct PE led them adopt an interval perspective to think about the gradient 

of the function in an interval either side of a point. 

5. Discussion 

The four snapshots presented above show that, given suitably designed activities, a 

graphical approach to antiderivative, such as the one described here, has the potential 

to engage students with thinking about functions in a pointwise, interval and global 

manner while they engage in constructing abstract knowledge. This was true of Amy 

and Jay, who employed each of these modes of thinking about function in their 

activity. Hence, we know that the graphical approach is accessible, at least for these 

students, who were of average ability, and takes the emphasis away from the standard 

algebraic manipulation that is often the norm. It would be useful to investigate 

whether the same results occur for a wider range of students. Moreover, it is 

conducive to the interval perspective, since in order to draw the antiderivative it was 

necessary for them to engage with functions on intervals. For example, in Snapshot 

1 we saw how they used an interval perspective to compare sections of graphs and 

thus enable a pattern matching strategy to emerge. In the second snapshot Amy and 

Jay identified intervals where a derivative function is positive or negative so that the 

corresponding antiderivative is increasing or decreasing in that interval. They then 

combined these to form the construct that when a function goes from negative to 

zero to positive, or vice versa, on an interval then the antiderivative has a local 

minimum or maximum point. In Snapshot 3 we see how they were able to divide the 

domain of a derivative function into four intervals and apply the construct above to 

each pair in turn, producing an antiderivative with two turning points.  

Constructing the point of inflection, seen in Snapshot 4, proved more challenging, 

but by reasoning from an interval perspective they were able to connect the local 

maximum of the derivative function to the inflection point on the antiderivative 
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graph. Graphically constructing a point of inflection on an antiderivative graph is not 

straightforward, although Yoon et al. (2014) have described one way students may 

approach this, using gestures. The two students were able to recognise that there 

would be a point of inflection on the antiderivative graph, through the local 

maximum/minimum property of the derivative, and could build-with these 

constructs, using them to construct other ideas. However, while there was evidence 

of consolidating E6 (a local maximum on the function graph corresponds to a point 

of inflection) a later task (not presented here) required the construct that a minimum 

on the derivative graph implies a point of inflection on the antiderivative graph with 

minimum gradient. Interestingly, in this case they were unable to use it in new 

situations, so we conclude that it was not consolidated. This was partly because there 

was no opportunity for them to consolidate it prior to the final task and thus have it 

freely available. In addition, the final task required them to manage the difficult 

process of coordinating two constructs. Why was this construct that a local minimum 

on the function graph corresponds to a point of inflection with minimum gradient on 

the antiderivative graph partially obscured? Possibly due to the emphasis on their 

two primary strategies, the interval construct that when the derivative is 

positive/negative then the antiderivative is increasing/decreasing on the given 

interval, and interval pattern matching. Their emphasis was confirmed when they 

were asked to write how to distinguish graphs of derivatives and antiderivatives. In 

their explanation they wrote: 

If a function is a derivative of another function then when it is above the x 

axis the function it is a derivative of will be increasing. When the derivative 
function is below the x axis, the function will be decreasing. 
If one function’s maximum or minimum matches up with a 2nd function’s 

crossing the x axis, then the second function is a derivative of the first. 

The first two sentences are a clear statement of the interval construct E2, while the 

third is reverse reasoning based on the pointwise constructs E4 and E5. Hence, we 

can deduce that all three of these constructs were consolidated by the students. There 

was also some evidence in Snapshot 4 that Amy and Jay were beginning to lay the 

foundation of a local perspective on function, reasoning on smaller and smaller 

intervals. For example, we see from line 283 that they were able to talk about the 

gradient being less steep either side of a maximum and so ‘The gradient decreases 

whichever way you go from that inflection point’, with the implication that this 

would be true even on a very small interval. Further, considering points to the left of 

the local maximum, as seen in lines 308-314 above, we can conclude that they were 

reasoning from an interval perspective, considering points ‘higher up’ on the graph 

and ‘closer to the maximum or minimum’, once again implying a small interval size. 

In the light of the above we recommend stressing an interval perspective of function 

during the transition from school to university as a potential bridge to the local 
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perspective needed at the tertiary level. It has the potential to assist with student 

understanding of the Fundamental Theorem of Calculus since it can assist in  

explaining why antiderivatives may be used during integration, something that many 

students in transition fail to appreciate. Another advantage for the secondary-tertiary 

transition of the kind of graph-based activity introduced here is that the tasks are 

suitable for secondary or tertiary students (such as those in our study) who have not 

been exposed to an interval perspective on function. This gives it value at either end 

of the secondary-tertiary transition. 

Moving students away from a focus on a pointwise or global perspective of functions 

to include an interval one has been described as important in students’ mathematical 

development toward a local perspective (Vandebrouck, 2011). In addition, the 

importance of including a graphical representation of function to help students in 

transition has been emphasised by Vandebrouck and Leidwanger (2016), who 

maintain that graphical tasks are important to assist understanding of limits. In the 

research presented here, there was little evidence of local thinking about functions 

since the graphical tasks did not require such an approach. However, the interval 

perspective is much closer to a local one than either a point or a global perspective, 

and hence it may be assumed that it is a useful starting point for progression to a 

local perspective. Confirming this assertion would be a useful subject for further 

research. Using the three perspectives on function the students were able to construct 

and consolidate a number of relevant mathematical constructs that they had not 

previously been exposed to. Although the construct that a local minimum on the 

function graph corresponds to a point of inflection with minimum gradient on the 

antiderivative graph had been constructed by Amy and Jay, their failure to 

consolidate it confirms the challenging nature of what is often an ongoing process, 

involving the need to fold back on previous ideas, and which may require several 

subsequent activities to do so (Hershkowitz et al., 2020).  

An important aspect of the process of abstraction is the social nature of the building 

of new knowledge structures. It is unlikely that Amy and Jay would have made 

similar progress in abstraction if they had worked individually. Rather, being part of 

a small co-learning group (Jaworski, 2001) provides a “supportive community 

through which knowledge can develop and be evaluated critically” (Jaworski, 2003, 

p. 252). This support, encouragement and positive critique were seen throughout 

Amy and Jay’s activity in this research. The implications for transition are that it is 

helpful for students both at school and university to learn new constructs in small 

groups. If students have this experience at school then continuing it in their tertiary 

experience can be beneficial. This may be achieved through tutorials but it has also 

been used in large lectures through the medium of flipped lectures, Problem-Based 

Learning (PBL), or a similar approach. Following an in-depth review of flipped 

lectures, Lo, Hew and Chen (2017) provide a suggested list of design principles for 
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them that includes: Facilitate peer-assisted learning through small-group learning 

activities. 

On several occasions we saw that Amy and Jay employed embodied, enactive 

thinking to trace curves. Such thinking with gestures has been shown to be beneficial 

in helping student construct formation (Yoon, et al., 2010, 2011) and the graphical 

environment seems to encourage this. Further, there was no evidence that Amy and 

Jay attempted tasks by resorting to algebraic methods. In their research Hong and 

Thomas (2014) found that a significant number of students try to solve graphical 

antiderivative problems by employing steps such as modelling the given graph 

algebraically, integrating symbolically and then sketching the resulting function. The 

reason this did not arise here may be that we considered the potential for this 

approach and so constructed graphs that did not resemble well known functions. 

While it may not be necessary to make the transition from school to university 

mathematics fully smooth, activities that promote an interval perspective on 

function, which is central to many areas of mathematics at university, can only be of 

benefit to student learning and assist them to make the change. It has been shown 

that an emphasis on a pointwise and symbolic algebraic thinking in schools tends to 

produce students with a reliance on this form of working (Gray & Thomas, 2001). 

In many countries this kind of algebraic procedural work dominates school 

mathematics, but the use of graphs with no explicit algebraic function requires 

students to think in a qualitatively different manner that will no doubt assist in the 

transition to tertiary mathematics. 
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