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BUILDING THINKING ABOUT GRAPHICAL ANTIDERIVATIVES: THE
ROLE OF INTERVAL PERSPECTIVES

Abstract. The concept of function traverses the mathematics studied at school and university
and is an important transitional link between the two. We examine how an interval
perspective on function may help with constructing graphical antiderivative functions. In
doing so a number of important constructs needed to build such a graphical understanding
are considered, along with how the students in the study linked them and built with them. In
addition, some of the difficulties they faced and possible reasons for them are explained. The
evidence presented shows that an interval perspective on function was important in being
able to construct antiderivative functions graphically. Hence, we propose that this interval
perspective on function may prove useful in helping students in transition to construct a local
perspective on function. In turn we suggest what a potential path for thinking about graphical
antiderivatives could look like and the kind of activities that could assist transition students
along it.
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Résumé. La notion de fonction traverse les mathématiques étudiées a 1’école et a I’université.
Cet article examine comment une perspective d'intervalle sur les fonctions peut aider des
étudiants a construire graphiquement des fonctions primitives. Un certain nombre de
concepts importantes nécessaires a la construction d'une telle compréhension graphique sont
examinés, ainsi que la maniére dont les étudiants de 1'étude les ont reliés et ont construit avec
eux. Les résultats montrent qu'une perspective d'intervalle sur les fonctions était importante
pour pouvoir le faire. Par conséquent, nous proposons que cette perspective d’intervalle sur
les fonctions puisse s’avérer utile pour aider des étudiants en transition a construire une
perspective locale sur les fonctions. En retour, nous voyons a quoi pourrait ressembler une
voie potentielle de réflexion sur les primitives graphiques et le type d'activités qui pourraient
aider les étudiants a faire la transition dans cette voie.

Mots clés. Abstraction, transition, analyse, graphe, primitive, perspective d’intervalle.

In many parts of the world, there is a shift in the way mathematics is taught in school
to the way it is taught in university (Thomas et al., 2015). This has variously been
described as a shift from focusing on techniques that have pragmatic value (in
solving tasks) to those of epistemic value (providing insight into the mathematical
objects and theories studied) (Artigue, 2002); from application of techniques to their
justification and significance within a mathematical theory (De Vleeschouwer,
2010); and from problem-solving skills to more abstract, rigorous, logical deductive
reasoning (Engelbrecht, 2010; Leviatan, 2008).
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During this transition, students often have difficulties with calculus topics (Thomas
et al.,, 2015) such as function (Dias et al.,, 2008), mathematical argumentation
(Farmaki & Paschos, 2007), real numbers (Ghedamsi, 2008), infinite series
(Gonzalez-Martin et al., 2011) and limits (Mamona-Downs, 2010; Oehrtman, 2009).
Research has identified graphical antidifferentiation and its relationship with
integration as a particular area of weakness for students transitioning to university
(Jennings, 2011; Thomas et al., 2015). To help surmount these difficulties,
Thompson and Carlson (2017) maintain it is essential that school students build
quantitative and covariational ways of thinking about function since these are
foundational for learning calculus. In addition, Jones (2015) demonstrated the value
of a multiplicatively-based summation conception based on ‘adding up pieces’ in
order for students to make sense of definite integrals. Both of these approaches
require a specific kind of thinking about functions, namely an interval perspective.

We explore how an interval perspective about functions can support students in the
transition between the more technical integration skills they usually acquire at high
school and the more conceptual ones they need at university, and specifically in their
understanding of the graphical antiderivative. This, in turn, can lead them to see
integrals as accumulation functions, leading to the Fundamental Theorem of
Calculus (Jones, 2015; Thompson & Silverman, 2008). We show that students can
develop an interval perspective on function through suitable activities that help them
build and make sense of key antiderivative constructs and thus assist them in the
transition to tertiary study.

1. The Interval Perspective

The notion of ‘interval perspective’ comes from a classification of four perspectives
that are thought to support versatile thinking (Thomas, 2008) about functions:
pointwise (or punctual), local, global (Vandebrouck, 2011; Montoya-Delgadillo,
Paez Murillo, Vandebrouck & Vivier, 2018) and interval (Thomas et al., 2017). Each
perspective directs attention to units of different sizes, ranging from a single point to
the whole of a function’s domain. A pointwise perspective focuses on
correspondences between two sets of numbers, an element and its image, whereas a
global perspective allows one to recognise and compare functions, to identify global
properties, or to perform transformations, such as translations. Local and interval
perspectives both focus on domain intervals of different scales. A local perspective
focuses on very small intervals, such as finding the rate of change of f'at the point x

using [xg, Xo + h] and }llirr}) w . In contrast, an interval perspective focuses

on larger intervals, such as the concavity of a function f"(x) < 0 on x € [a, b], or
f(x1)—f(x0)

the average rate of change of the function on a larger interval [xg, x4 ], T
1—40
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School calculus often highlights pointwise and global perspectives, whereas the
teaching of calculus at university often focuses on a local perspective more often
than in High School, using techniques from analysis (Ferndndez-Plaza et al., 2013).
This often causes difficulty for students. Vandebrouck (2011) claims that when
secondary school calculus shifts from an initial construction of pointwise and global
perspectives to continuity or differentiability it tends to erase the pointwise and
global points of view but doesn’t allow students to reach a local point of view.
Further, he asserts that when students are asked to solve tasks where algebraic
techniques are insufficient they are then unable to develop a local perspective or to
consider functions as complex objects with pointwise as well as global properties.
The crucial role that function perspectives play in the secondary-tertiary transition
has also been noted by Gueudet and Thomas (2020).

Although school calculus often focuses on pointwise and global perspectives,
interval perspectives are useful when learning about graphical antiderivatives.
Consider the graphs of two functions, la and 1b provided in figure 1, with their
antiderivatives directly below, 1c and 1d. A student may be able to recognise,
globally, that each graph is similar to a parabola and hence the antiderivative should
be similar to a cubic graph (this also involves recognising the parabolic nature of the
graphs and recalling the form of its antiderivative). However, this is insufficient to
solve the problem of drawing each antiderivative. Pointwise properties can help. For
example, graph 1b has two points where the gradient is zero (at x = 1 and x = 3),
while graph 1a has none. But an interval perspective provides additional information,
such as intervals where the two antiderivatives have positive and negative gradients;
graph 1a tells us that the antiderivative graph 1c¢ will always be positive in gradient,
whereas graph 1b provides the information that the antiderivative graph 1d will be
positive on two intervals x < 1 and x > 3, and negative on the interval (1, 3).

The transition from school to university is often encumbered by a difficult transition
from pointwise and global perspectives (with a focus on technical procedures) to
local perspectives (to explore concepts). We examine the feasibility of using the
interval perspective to help students construct and make sense of concepts of
graphical antiderivative, with the hypothesis that it can act as a bridge for developing
a local perspective and conceptual understanding of the graphical antiderivative.
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Figure 1. The need for pointwise and interval perspectives

2. Abstraction in Context

To analyse students’ understanding of graphical antiderivatives, we use a socio-
cognitive framework, based on Abstraction in Context (AiC), where abstraction is
defined as an activity vertically reorganising previously constructed mathematical
knowledge into a new structure!, and the context includes classroom and curricular
aspects of the learning environment as well as students’ prior learning experiences
(Hershkowitz et al., 2001; Dreyfus et al., 2015). Abstraction is a central process in

! This definition owes much to the pioneering work of the Freudenthal school of Realistic
Mathematics Education and their development of the concept of vertical mathematisation
(see e.g., Treffers & Goffree, 1985).
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the learning of mathematics. From this perspective structure results from the process
of abstraction.

An operational model used as a lens for observing abstraction, developed through
successive iterations (Schwarz et al., 2009), comprises nested epistemic actions, and
has been applied to complex processes of abstraction and environments rich in social
interactions (Dreyfus et al, 2001, 2015). The model, called the RBC+C model,
comprises three epistemic actions: recognising; building-with; constructing. Here
recognising occurs when a student realises that a mathematical construct they are
familiar with is inherent in a mathematical situation. This may be through analogy
with the known construct or through specialisation, where the more general known
construct is seen to have a specialised application in the situation. The action of
building-with consists of combining existing constructs to attain a goal, such as
solving a problem or justifying a statement. However, the central step of abstraction
is the action of constructing, where existing knowledge constructs are assembled and
integrated by vertical mathematisation to produce or use a new construct.

The nested nature of the epistemic actions in abstraction is such that “constructing
incorporates the other two epistemic actions in such a way that building-with actions
are nested in constructing actions and recognising actions are nested in building-with
actions and in constructing actions.” (Dreyfus et al., 2001, p. 310). Further Dreyfus
et al. (ibid.) argue that abstraction passes through three phases: a need for a new
structure; the emergent construction of a new construct; and finally the consolidation
of the new construct through repeatedly recognizing it and building-with it in further
activities (Schwarz et al., 2009). Consolidation is a long term process during which
the new construct becomes freely and flexibly available. Criteria to infer the
consolidation of a construct include immediacy, self-evidence, confidence,
flexibility, and awareness (Dreyfus & Tsamir, 2004).

When students learn in a classroom context Hershkowitz et al. (2007) observe that it
is important to address how individuals interact with other students in a group as
they follow parallel processes of abstraction. In our analysis of student activity of
building a graphical understanding of antiderivative functions we will employ this
framework because it has proved useful to describe the construction of knowledge
by small groups of interacting students and thus provides a methodological tool to
examine how an interval perspective on function may arise and be employed. In
order to carry out this examination, we designed a sequence of activities, and
implemented it with a pair of students at the transition from school to university; we
observed their process of constructing knowledge (using AiC), focusing on the
emergence and use of an interval perspective when dealing with graphical tasks
involving antiderivatives.
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3. Method

This study is part of a larger project? that explored students’ versatility of thinking
(Thomas, 2008) as they recognise, build, construct and consolidate (Hershkowitz et
al., 2001) concepts in calculus. Initially, we intended to study the thinking of students
in their final or penultimate year of secondary school, but due to data collection
constraints and opportunities, decided to focus on students in a first year
undergraduate mathematics course in a large university in New Zealand. This
undergraduate course was considered a ‘bridging’ course, as it was designed for
students who had not completed the final year of calculus at secondary school. The
course covered topics ranging from algebra and trigonometry to single variable
calculus.

The two participants reported in this study, Amy and Jay, were enrolled in this
‘bridging’ course, and had recently finished learning about integration and
differentiation when they participated in the study. Their exposure to
antidifferentiation in the course was largely limited to procedure-based rules for
finding antiderivatives in symbolic form. Graphical antiderivatives are generally not
taught in New Zealand schools and they had not worked with them before. Hence,
they were ideal subjects to examine knowledge construction in this area.

Amy and Jay volunteered to work together on antiderivative tasks in four 1-hour
sessions over two weeks, outside of class time. The sessions took place in a small
room where they had use of a large table space, as seen in figure 2. They were given
a monetary voucher in compensation for their time, but no course credit for
participating in the research. They knew each other from the bridging course from
which they were recruited, but they had not previously met the researcher, who was
present during each of the sessions to clarify instructions and offer encouragement
but who refrained from guiding them mathematically.

—
| \

N ————. A

Figure 2. A room setting as Amy and Jay worked on the tasks

2 Ethics approval was obtained for the research study.
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Each session comprised a sequence of graph-based tasks, designed by the authors,
that explored properties of graphical antiderivatives, involving drawing
antiderivative functions and reasoning about local extrema, the constant of
integration, concavity and points of inflection. Since the research team wished to
avoid instances where students could rely on pre-learned procedures, the calculus
concepts were deliberately presented graphically in the tasks rather than
symbolically, with little or no numerical information given on the graph axes. The
graphs were deliberately drawn so the functions did not resemble familiar
polynomials and no algebraic equations were provided for the functions. The tasks
were given to the students one at a time, but they had access to all previously
completed tasks. The students were videotaped and audiotaped as they worked, and
transcripts of their speech and actions created.

4. Results and Analysis

We present four snapshots of Amy and Jay’s work in the first two sessions. In each
of these we will see how an interval perspective on function enabled them to build
key constructs of graphical antiderivatives. The transcripts have been analysed using
the methodology of Abstraction in Context as explained by Dreyfus et al. (2015) but
the full details of this analysis are not presented here in order to keep the paper
reasonably short and retain the flow from one episode to the next.

4.1. Snapshot One: The emergence of a global-interval perspective

In the first session, students were presented with the distance-height graph of a
tramping track (hiking trail), and were asked to plot a graph of the gradients of the
track (see figure 3). This is mathematically equivalent to drawing the graph of a
derivative of a function, given the graph of the function itself. This snapshot shows
how Amy and Jay were able to move their thinking from a primarily pointwise
perspective to an interval one, and how this provided a breakthrough in their progress
towards a solution to a task.



54 MIKE THOMAS, ToMMY DREYFUS, CAROLINE YOON

Distance Height Graph of Track

Giredient = U

———
L

300

Cradient = 3,88 Gradient = 088

200

Gradient = ¢

Height above sea level (m)
100

"™t ~01 Gradieat = 0.3

v

100 200 300 400 500 600 700 800 900 1000
Distance from the beginning of the track (m)

6. On the axes below, plot the gradients of the track and join them with a smooth
curve. (Also include the gradients you caleulated in 1a and 1b).

» Gradient Graph of Track
b S

hx

100 200 300 100 500 600 700 800 950 1000
% 3 i *
Distance from the beginning of the track (m) %

Gradient of the Track

x

!
Figure 3. The graph of the initial tramping track and the gradient graph produced by Amy
and Jay. Note, a second gradient graph was also drawn on the same axes for another
tramping track of less amplitude.

After completing this task, Amy and Jay were then asked to work in the opposite
direction. They were presented with a graph of the gradients of a tramping track (see
figure 4) and asked to produce its distance-height graph. This was mathematically
equivalent to finding the antiderivative of a function presented graphically, with no
specific values given.
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Figure 4. The tramping track task (the second graph, 4b, was presented directly below the

first).

Amy suggested a method for numerically approximating the area, saying, “You
could add up all the little squares and consider them to be one hundred...if you just
do it that way adding up the squares”. This corresponds to the Recognition phase of
the RBC+C framework, since she recognised the potential value of a previous
construct. However, attempts were quickly abandoned and she suggested a
completely different approach.

Amy 421

Basically because this [points at a function
graph from figure 3] is like kind of similar to
that [the gradient graph in figure 4a)] except
this part [points at the first minimum of graph
4a] is smaller which says that... Which seems
to mean somehow that this gradient doesn’t
decrease at the same rate it has increased here,
so I’m thinking it might go up like this, and
then this side coming down is not quite as
steep [traces pen along the function graph in
the warm-up task] because it doesn’t
continue, like this is not as big as here, and
that’s maximum steepness [points at the
gradient graph in figure 4a]. It’s steeper than
the bit coming down [traces pen along the
first positive, decreasing section of the
gradient graph], ...and then not quite as steep
as and then a really flat gradient again and
then go down again. Because there is another
point where the gradient is zero, but it’s not
[draws a rough sketch—see figure 5].

Pattern
matching
approach

Global and
pointwise
perspectives

Interval
perspective
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Figure 5. Amy’s rough sketch of the first part of the antiderivative.

Speaker Line # Transcription and comments Analysis

Amy

Jay

Jay

423

424

425

426

427

428

...I like this one [points at her
rough sketch in figure 5]. How did
I do it? I don’t know if that makes
sense, I’'m not sure about this bit
here basically [circles the section
in figure 4a where the graph is
negative and then positive again—
see figure 0].

That is true that when these are
zero [points at the second and
third x intercepts in figure 4al
then that should be..[pause]

So there should be two flat bits
here [points at figure 3.

One there, one there and one there,
[points at the second, third and
fourth x-intercepts in figure 4a] so
there are three during the track
itself.

Flat bits, and then decreasing
[looks at figure 4]. Yeah there’s
got to be two other flat bits. Three
other flat bits. Oh no wait a second
because when we did this there
was [points at figure 4, and then
looks confused].

..[pause]

Pointwise perspective;
recognises the relevance
of a zero gradient

Builds-with the zero
gradient to get a
horizontal tangent on the
antiderivative

Pointwise perspective;
agrees with Amy about
the zero gradients

Starts the move to an
interval perspective
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431
432

433

434
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This thing is this is just not going
to work for every single..[pause]

I reckon it’s like this, it’s a big hill
and then a little hill [traces this on
her page)]

And then

Because if you split this into two
[lays a pencil vertically through
the third x-intercept in figure 4a)
you’ve got two graphs that are like
this [points at function graph at
the top of figure 3] except that
some of the steepnesses are going
to be different. Generally I think
that..

So, you’re quite right.. then in this
first half..[pause; agrees]

A bit one and then this second on
is like not as flat, flatter, like there
is a steep hill and then a flat hill.
[traces this on the page] You
know how this graph went that
way [picks up one of the
worksheets] So we thought that
that would be smaller so if you
think about that and these ones are
smaller than this then the second
hill would be there. [indicates this
by pointing at her sketch of the
antiderivative graph].

57

The breakthrough using
an interval perspective

Interval perspective; a
pattern matching strategy
is emerging; Amy has
shifted her attention from
the interval that was
problematic for her
(utterance 423, figure 6)
by segmenting the given
graph (figure 4a) into two
intervals, each containing
one maximum and one
minimum

Global interval
perspective; recognises
the value of the derivative
approach; pattern
matching using reverse
thinking from the
derivative graph in figure
3
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Figure 6. The parts of the graph circled by Amy, shown here in an oval (see Line 423)

Amy’s identification of this pattern suggests the students are using the construct,
‘similar graphs or sub-graphs have similar antiderivatives’. We see this in Amy’s
insight (see line 432) that the given derivative graph can be split into two parts, each
interval with a similar shape but first “a big hill and then a little hill” (430), and hence
a similar antiderivative. In turn, she notices that they can apply the warm-up activity
(figure 3) in reverse to each of these interval parts to obtain two parts to the
antiderivative, each having the general shape of the graph at the top of figure 3.
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Figure 7. Amy and Jay’s solution to the task using a pattern matching approach.

Her conjecture is that the difference between the two ‘hills’ or graph parts is that
there would be “a steep hill and then a flat hill” (434). It is unclear how she arrived
at the smaller ‘hill’, whether through the lower gradient for the second part or simply
a wrong matching of the corresponding height of the relative maxima on the gradient
graph. However, in this manner they were able to employ the similarity of shape
construct and building-with it managed to complete the task to draw the
antiderivative, as seen in figure 7.
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4.2. Snapshot Two: Employing an interval perspective to construct turning
points

In the second session®, covered in this snapshot, we present evidence that Amy and
Jay are able to reason with function intervals on either side of a zero value in the
derivative function and to see the value of this perspective in enabling them to
construct a maximum or minimum on the antiderivative graph. In doing so, Amy and
Jay showed that they had constructed the following constructs, labelled E1-E4,
which require both pointwise and interval perspectives:

El: When the function is positive/negative at a given point the antiderivative is
increasing/decreasing at that point. [pointwise perspective]

E2: When the function is positive/negative in a given interval the antiderivative is
increasing/decreasing in that interval. [interval perspective]

E3: When the function is zero at a point the antiderivative has a turning point
there. [pointwise perspective]

E4: When the function goes from negative to zero to positive on an interval then
the antiderivative has a local minimum point there. [interval perspective]

Figures 8 and 9 show examples of Amy and Jay’s reasoning during this session in
support of the above claims. For example, in figure 8a we see a statement providing
evidence that they had constructed El for the point x = @ on the given graph.
Similarly, construction of E2 is demonstrated in figure 8b (where the interval is
clearly marked) and E3 and E4 in figure 8c, where a local minimum at the point
where x = b is described along with reasoning via an interval perspective, that “the
gradients [plural] are going from negative to positive”.

3 Transcript line numbering started from 1 again in this session.
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Figure 8. Evidence for construction of antiderivative ideas E1-E4.

They were also able to integrate their knowledge of these constructs in a building-
with phase, correctly drawing the antiderivative graph of a decreasing function (see
figure 9). In this process they state that the “gradients are going from positive to
negative on the gradient function graph” and have constructed ES, closely related to
E4, but identifying a local maximum. Once again they are clearly seeing the
‘gradients’ in an interval on either side of the zero value.

E5:  When the function goes from positive to zero to negative on an interval then
the antiderivative has a local maximum point there. [interval perspective]
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Gradients are
going from
positive to
negative on
the gradient
function graph

Figure 9. Using an interval perspective when building-with E1 — E4 to construct ES and
draw an antiderivative graph.

4.3. Snapshot Three: An interval perspective enables reasoning on a local
maximum

Next, Amy and Jay work on questions designed to support them in the antiderivative
of the function shown in figure 10. This raised the issue of how to deal with a
maximum gradient. This snapshot details observations of Amy and Jay’s reasoning
on the intervals either side of a local maximum on the derivative function to construct
information on the antiderivative graph.

A

v

/ N

Figure 10. Amy and Jay are asked to draw a graph of the antiderivative of this function.
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First, they recognise the usefulness of constructs E1-E5 above, and work with them,
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as they had previously done.

Jay 209 Yup, but this one starts as negative Recognises E2, on
[points at the positive, increasing part intervals
of the graph in figure 10)].

Amy 210 Negative to positive to negative again.  Interval perspective,

confirms E2 relevant

Jay 211 So, turning points are here [points at Recognises and builds-
the two x intercepts in figure 10]. with E3, at points where

the function is zero—
pointwise perspective

Amy 220 And then negative. That’s kind of Interval perspective;
what we said eh? That means it’s builds-with E2
going to be going down, decreasing,
and it’s going to be.[marks the
interval between the second x-
intercept and the right end point in
figure 11]

Jay 221 So basically like the two graphs we Interval perspective;
just did together.. like that [draws a Dividing the graph into
vertical line through the local two intervals, he sees the
maximum of the graph — see figure similarity with the pattern
11]. of the two previous

examples, and this
enables them to build-
with E4 and E5

Amy 222 So it’s kind of like what we had eh? Confirms the similarity

Here Jay uses an interval perspective to recognise (Line 221) that if the graph of the
function in figure 10 is divided through its local maximum point then, using the two
resulting intervals, it may be seen as a composite of the two types of graphs they had
previously considered in figures 8 and 9. They then build-with this idea by inferring
that they can combine their previous antiderivatives from these two tasks to draw the
antiderivative of the graph in figure 10. In their solution the vertical line dividing the
graph in two is clearly visible, as is the solution, which builds-with E4 and ES5,
combining a local minimum next to a local maximum. These are seen in their
solution in figure 11. We can also see from the shaded areas in the first diagram
along with the words ‘negative’, ‘positive’ and ‘negative’ written along the axis that
they have used the interval perspective seen in E1 and E2 either as a check, or to
help construct the antiderivative graphs.
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Figure 11. Amy and Jay’s working and solution to the graph of the antiderivative of the
function shown in figure 10. Note, points ¢ and d were not present while Amy and Jay
initially worked on the question but were added by them later (see 4.4).

However, while their pattern matching approach has enabled them to solve the
problem it has not advanced to the point where they could construct a justification
for why a positive/negative function corresponds to an increasing/decreasing
antiderivative, and in particular they have not yet built the pointwise relationship
between the local maximum of the function and the point of inflection on the
antiderivative. In terms of the RBC+C framework we can say that they have
recognised the relevance of constructs E1-ES5 to the task, and built-with them to solve
the problem, but have not produced a new construct.

4.4. Snapshot Four: Emergence of a new construct—Using an interval
perspective to construct an inflection point for the antiderivative

In this final snapshot we briefly present evidence of how Amy and Jay reasoned from
an interval perspective to build the construct of the antiderivative’s point of
inflection. The task instructed them to attend to two points, ¢ and d on the graph (see
figure 12), with the instruction: ‘Consider the two points on the x-axis marked ¢ and
d below. At which point is the value of the function f greater? (i.e., is f{c)>f(d) or
vice versa?). Discuss and write down what this means for the antiderivative of f at
x=candx=d.’
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Figure 12. Amy and Jay’s solutions to questions in session 2.

As Amy and Jay’s discussed this question, they begin constructing a new and
important idea about points of inflection. They have the versatility to consider an
idea abstracted during school work on differentiation, a previous construct (PE).

PE: The maximum gradient of an increasing function, which changes from
concave up to concave down through the point, occurs at a point of inflection.

We note that this construct, PE, requires both a pointwise perspective, considering
the point of inflection, and an interval perspective, to reflect on the gradient of the
function in an interval either side of the point, where it is either concave up or
concave down.

Initially, they seem to be referring to the point at x=c as a point of inflection (this
point is approximately ‘half way’ along the interval where y > 0, and is where the
gradient appears to be a maximum on the derivative graph), even though the function
appears concave down throughout the interval containing c. This line of reasoning
persists for a few minutes; later they focus on the maximum of the given function f.
Amy 282 It’s going from, it’s going from a positive Interval perspective ;

grad, well it’s either going from a change in sign of gradient

positive gradient to a negative gradient,

or a negative to a positive.

Jay 283 Not necessarily, just basically at that Pointwise perspective,
point, [points at the point of inflection on PE: Maximum gradient at
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their antiderivative graph in figure 11]
right where the inflection point is, [points
at the local maximum of f] that is a
maximum gradient there. So if you could
draw a tangent line at that point [sketches
a little tangent line from the point of
inflection on the antiderivative graph]
that would be the steeper, than anything
on either side of it. The gradient
decreases whichever way you go from
that inflection point.

So this particular one we could say is a
maximum [points at the local maximum

of /]
Well that’s true.

It’s going from positive, it’s going from
positive [holds her pencil above the
antiderivative graph and turns it
indicating the different tangent lines].

It’s still positive to here though. [points
at the second x intercept of f] This is the
least positive [points at the first positive,
decreasing section of f].

It starts, it goes from being positive, it
starts to get.. [indicates with the pencil
the slope decreasing]

To turn around, yeah, it gets there [points
at the second x intercept of f] which is
another maximum or minimum. It’s a
maximum, then.

65

point of inflection.
Interval perspective; the
gradient decreases on
either side of x=m— see
figure 12

pointwise perspective

Interval perspective using
an embodied approach

Pointwise and interval
perspectives

Interval perspective, again
embodied

Pointwise perspective;
uses ES

As Amy and Jay reflect on the question “At which point is the value of the function
f greater? (i.e., is flc)>f(d) or vice versa?)" (see figure 12), they connect the local
maximum of fto the inflection point on the antiderivative graph.

Jay

Amy

306

307

Ah, OK, so what that means is, m is the
inflection [marks the local maximum on
the function as m, see figure 12]

It’s reaching that inflection point eh?
[points at the local maximum of f] Like

this is [points at f(d)].

Pointwise comparison
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Jay 308 So d is steeper than ¢ [points at f(d) and The gradient at
then at f{c)] Um. And it probably does x = d on the
lead to d is higher.. up.. on the derivative antiderivative is greater
graph than c is. than the gradient at

x=c

Amy 309 Because if it was down here [points at the Interval perspective;
first negative, decreasing section of f] uses E2
then it would be the downward slope.
Half way down the downward slope.

Amy 313 Yeah, so..inflection point. So, um.. So, Pointwise perspective
shall we write fof d [(d)] is...

Jay 314  Yeah let’s do that.. [Starts writing down  Still building the idea

the answer to question in figure 12a] Um,
which means.. that d.. is closer to the
maximum or minimum, is that how you

that the maximum point
gives a maximum
gradient

say it or..?

In lines 313 and 314 we see that Jay and Amy are using the idea of a maximum
gradient at the point marked m to build the idea of the increasing gradient on an
interval as points get closer to m. Thus a pointwise approach generalises to interval
thinking through their idea of being, in general, ‘closer to’ m, i.e. in an interval. This
idea of ‘getting closer to’ a point may indicate the start of the formation of a local
perspective that becomes so important in the transition to tertiary mathematics. Their
written solution shows this and describes the relationship between the gradient of F*
corresponding to f{c) and f{(d), saying that “d is closer than ¢ to the inflection point
(which is where the gradient reaches its maximum value) on the F”, in figure 12a.
So although they simply state that f(d) > f(c) they are using the relative, pointwise
comparison idea that being closer to the maximum gradient m implies a larger
gradient, rather than using the general, notion that points ‘higher up’ on the graph (ie
with a greater y-value) represent a steeper gradient. Hence, they have produced a
new construct, E6, that identifies the location of a point of inflection on the
antiderivative graph. In addition to constructing E6, there is evidence that they have
consolidated it. In their discussion we see repeated, flexible recognition of this new
construct. However, we have no direct evidence they are using an interval
perspective to generalise to E7, that points closer to the maximum on the derivative
graph represent a steeper gradient on the antiderivative graph.

4 We use their notation F for the antiderivative of .
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E6: A local maximum on the function graph corresponds to a point of inflection
with maximum gradient on the antiderivative graph.

E7: The greater the value of f(p) on the function graph the greater the gradient at
x = p on the antiderivative graph F.

Following their discussion they wrote, as seen in figure 12b that “m is where the
gradient is at its greatest, meaning on the F'[antiderivative] graph, this is an inflection
point.” While this was written second, as an explicit answer to the question asked in
figure 12b, it appears that this had been constructed while working on a later
question.

In this snapshot we see that Amy and Jay were able to form links between school
and university constructs, in this case between differentiation and antiderivative,
which is an important aspect of student thinking during transition. Here, reflecting
on the construct PE led them adopt an interval perspective to think about the gradient
of the function in an interval either side of a point.

5. Discussion

The four snapshots presented above show that, given suitably designed activities, a
graphical approach to antiderivative, such as the one described here, has the potential
to engage students with thinking about functions in a pointwise, interval and global
manner while they engage in constructing abstract knowledge. This was true of Amy
and Jay, who employed each of these modes of thinking about function in their
activity. Hence, we know that the graphical approach is accessible, at least for these
students, who were of average ability, and takes the emphasis away from the standard
algebraic manipulation that is often the norm. It would be useful to investigate
whether the same results occur for a wider range of students. Moreover, it is
conducive to the interval perspective, since in order to draw the antiderivative it was
necessary for them to engage with functions on intervals. For example, in Snapshot
1 we saw how they used an interval perspective to compare sections of graphs and
thus enable a pattern matching strategy to emerge. In the second snapshot Amy and
Jay identified intervals where a derivative function is positive or negative so that the
corresponding antiderivative is increasing or decreasing in that interval. They then
combined these to form the construct that when a function goes from negative to
zero to positive, or vice versa, on an interval then the antiderivative has a local
minimum or maximum point. In Snapshot 3 we see how they were able to divide the
domain of a derivative function into four intervals and apply the construct above to
each pair in turn, producing an antiderivative with two turning points.

Constructing the point of inflection, seen in Snapshot 4, proved more challenging,
but by reasoning from an interval perspective they were able to connect the local
maximum of the derivative function to the inflection point on the antiderivative



68 MIKE THOMAS, ToMMY DREYFUS, CAROLINE YOON

graph. Graphically constructing a point of inflection on an antiderivative graph is not
straightforward, although Yoon et al. (2014) have described one way students may
approach this, using gestures. The two students were able to recognise that there
would be a point of inflection on the antiderivative graph, through the local
maximum/minimum property of the derivative, and could build-with these
constructs, using them to construct other ideas. However, while there was evidence
of consolidating E6 (a local maximum on the function graph corresponds to a point
of inflection) a later task (not presented here) required the construct that a minimum
on the derivative graph implies a point of inflection on the antiderivative graph with
minimum gradient. Interestingly, in this case they were unable to use it in new
situations, so we conclude that it was not consolidated. This was partly because there
was no opportunity for them to consolidate it prior to the final task and thus have it
freely available. In addition, the final task required them to manage the difficult
process of coordinating two constructs. Why was this construct that a local minimum
on the function graph corresponds to a point of inflection with minimum gradient on
the antiderivative graph partially obscured? Possibly due to the emphasis on their
two primary strategies, the interval construct that when the derivative is
positive/negative then the antiderivative is increasing/decreasing on the given
interval, and interval pattern matching. Their emphasis was confirmed when they
were asked to write how to distinguish graphs of derivatives and antiderivatives. In
their explanation they wrote:

If a function is a derivative of another function then when it is above the x
axis the function it is a derivative of will be increasing. When the derivative
function is below the x axis, the function will be decreasing.

If one function’s maximum or minimum matches up with a 2" function’s
crossing the x axis, then the second function is a derivative of the first.

The first two sentences are a clear statement of the interval construct E2, while the
third is reverse reasoning based on the pointwise constructs E4 and E5. Hence, we
can deduce that all three of these constructs were consolidated by the students. There
was also some evidence in Snapshot 4 that Amy and Jay were beginning to lay the
foundation of a local perspective on function, reasoning on smaller and smaller
intervals. For example, we see from line 283 that they were able to talk about the
gradient being less steep either side of a maximum and so ‘The gradient decreases
whichever way you go from that inflection point’, with the implication that this
would be true even on a very small interval. Further, considering points to the left of
the local maximum, as seen in lines 308-314 above, we can conclude that they were
reasoning from an interval perspective, considering points ‘higher up’ on the graph
and ‘closer to the maximum or minimum’, once again implying a small interval size.

In the light of the above we recommend stressing an interval perspective of function
during the transition from school to university as a potential bridge to the local
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perspective needed at the tertiary level. It has the potential to assist with student
understanding of the Fundamental Theorem of Calculus since it can assist in
explaining why antiderivatives may be used during integration, something that many
students in transition fail to appreciate. Another advantage for the secondary-tertiary
transition of the kind of graph-based activity introduced here is that the tasks are
suitable for secondary or tertiary students (such as those in our study) who have not
been exposed to an interval perspective on function. This gives it value at either end
of the secondary-tertiary transition.

Moving students away from a focus on a pointwise or global perspective of functions
to include an interval one has been described as important in students’ mathematical
development toward a local perspective (Vandebrouck, 2011). In addition, the
importance of including a graphical representation of function to help students in
transition has been emphasised by Vandebrouck and Leidwanger (2016), who
maintain that graphical tasks are important to assist understanding of limits. In the
research presented here, there was little evidence of local thinking about functions
since the graphical tasks did not require such an approach. However, the interval
perspective is much closer to a local one than either a point or a global perspective,
and hence it may be assumed that it is a useful starting point for progression to a
local perspective. Confirming this assertion would be a useful subject for further
research. Using the three perspectives on function the students were able to construct
and consolidate a number of relevant mathematical constructs that they had not
previously been exposed to. Although the construct that a local minimum on the
function graph corresponds to a point of inflection with minimum gradient on the
antiderivative graph had been constructed by Amy and Jay, their failure to
consolidate it confirms the challenging nature of what is often an ongoing process,
involving the need to fold back on previous ideas, and which may require several
subsequent activities to do so (Hershkowitz et al., 2020).

An important aspect of the process of abstraction is the social nature of the building
of new knowledge structures. It is unlikely that Amy and Jay would have made
similar progress in abstraction if they had worked individually. Rather, being part of
a small co-learning group (Jaworski, 2001) provides a “supportive community
through which knowledge can develop and be evaluated critically” (Jaworski, 2003,
p. 252). This support, encouragement and positive critique were seen throughout
Amy and Jay’s activity in this research. The implications for transition are that it is
helpful for students both at school and university to learn new constructs in small
groups. If students have this experience at school then continuing it in their tertiary
experience can be beneficial. This may be achieved through tutorials but it has also
been used in large lectures through the medium of flipped lectures, Problem-Based
Learning (PBL), or a similar approach. Following an in-depth review of flipped
lectures, Lo, Hew and Chen (2017) provide a suggested list of design principles for
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them that includes: Facilitate peer-assisted learning through small-group learning
activities.

On several occasions we saw that Amy and Jay employed embodied, enactive
thinking to trace curves. Such thinking with gestures has been shown to be beneficial
in helping student construct formation (Yoon, et al., 2010, 2011) and the graphical
environment seems to encourage this. Further, there was no evidence that Amy and
Jay attempted tasks by resorting to algebraic methods. In their research Hong and
Thomas (2014) found that a significant number of students try to solve graphical
antiderivative problems by employing steps such as modelling the given graph
algebraically, integrating symbolically and then sketching the resulting function. The
reason this did not arise here may be that we considered the potential for this
approach and so constructed graphs that did not resemble well known functions.

While it may not be necessary to make the transition from school to university
mathematics fully smooth, activities that promote an interval perspective on
function, which is central to many areas of mathematics at university, can only be of
benefit to student learning and assist them to make the change. It has been shown
that an emphasis on a pointwise and symbolic algebraic thinking in schools tends to
produce students with a reliance on this form of working (Gray & Thomas, 2001).
In many countries this kind of algebraic procedural work dominates school
mathematics, but the use of graphs with no explicit algebraic function requires
students to think in a qualitatively different manner that will no doubt assist in the
transition to tertiary mathematics.
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