UE Réseaux de neurones
Master Mathématiques et applicationsParcours Statistique
Description
Ce cours introduit les principaux outils d'apprentissage profond. Il comprend une partie introduisant les principales notions théoriques liées à ce domaine: fonctions de perte, propagation forward et backward, descentes de gradient, epoques, sur-apprentisage. Les principales architectures et leur usages sont ensuite introduites et mises en oeuvre à l'aide de bibliothèques Python: MLP, réseaux convolutionnels, GAN, transformers notamment.
MCC
Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.
- Régime d'évaluation
- CT (Contrôle terminal, mêlé de contrôle continu)
- Coefficient
- 3.0