UE Réseaux de neurones

UE Réseaux de neurones
Master Mathématiques et applicationsParcours Statistique

Credits3 crédits
Catalogue2024-2025

Description

Ce cours introduit les principaux outils d'apprentissage profond. Il comprend une partie introduisant les principales notions théoriques liées à ce domaine: fonctions de perte, propagation forward et backward, descentes de gradient, epoques, sur-apprentisage. Les principales architectures et leur usages sont ensuite introduites et mises en oeuvre à l'aide de bibliothèques Python: MLP, réseaux convolutionnels, GAN, transformers notamment.

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.

Régime d'évaluation
CT (Contrôle terminal, mêlé de contrôle continu)
Coefficient
3.0