Analyse
Master Mathématiques et applicationsParcours Magistère de mathématiques

Catalogue2024-2025

Description

Topologie des espaces vectoriels normés : en dimension finie, complétude, espace de Banach, quelques exemples, projection sur les espaces de dimension finie, espace des applications linéaires, dual topologique.
Espaces de Hilbert : base hilbertienne, inégalité de Bessel, identité de Fourier et de Parseval. Exemple de l’espace H1(S1). Espace des fonctions intégrables, les espaces Lp (inégalité de Hölder, de Minkowski), dualité lp-lq, dualité Lp-Lq éventuellement sans preuve complète.
Espaces de fonctions continues et espaces de fonctions dérivables : théorèmes d’approximation de Weierstrass, de Korovkin, théorème d’Ascoli.
Séries de Fourier : d’abord en dimension 1 puis en dimension quelconque. Différents aspects de la convergence : C0, L2, L1, L8. Application à l’équation de la chaleur.
Séries de Fourier : d’abord en dimension 1 puis en dimension quelconque. Différents aspects de la convergence : C0, L2, L1, L8. Application à l’équation de la chaleur.

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.

Régime d'évaluation
CT (Contrôle terminal, mêlé de contrôle continu)
Coefficient
2.0

Évaluation initiale / Session principale - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coéfficient de l'épreuveNote éliminatoire de l'épreuveNote reportée en session 2
Écrit Analyse S1
CTET1801.00

Seconde chance / Session de rattrapage - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coéfficient de l'épreuveNote éliminatoire de l'épreuve
Écrit Analyse S1
CTET1801.00