Analyse S2
Licence Sciences pour la santéParcours Mathématiques et santé

Catalogue2024-2025

Description

  1. Propriétés de R et manipulation d’inégalités et inégalité triangulaire (dans C). Bornes supérieures et inférieures.
  2. Suitesréelles. Limite. Critères de convergence liés à l’ordre sur R. Exemples de parties denses de R. Théorème de Bolzano-Weierstrass.
  3. Limites de fonctions définies sur un intervalle, continuité.
    • Caractérisation séquentielle de la continuité, cas d’égalité de fonctions continues sur des parties denses.
    • Les grands théorèmes : théorème des bornes, des valeurs intermédiaires, de la bijection monotone.
    • Continuité des fonctions usuelles
  4. Dérivabilité par taux d’accroissement.
    • Dérivation des opérations arithmétiques, de la composition, de la réciproque.
    • Théorèmes de Rolle et des accroissements finis. (Application : prolongement C^1 et théorème de Darboux).
    • Formule de Taylor-Lagrange et DL.
  5. Étude des suites récurrentes xn+1=f(xn) avec f usuelle.

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.

Régime d'évaluation
ECI (Évaluation continue intégrale)
Coefficient
5.0

Évaluation initiale / Session principale - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coéfficient de l'épreuveNote éliminatoire de l'épreuveNote reportée en session 2
épreuve 1
SCET901.5
épreuve 2
ACET1202